Suppr超能文献

通过聚焦电子束诱导蚀刻对金属氧化物半导体进行选定区域操纵以实现纳米级器件编辑

Selected Area Manipulation of MoS via Focused Electron Beam-Induced Etching for Nanoscale Device Editing.

作者信息

Lasseter John, Gellerup Spencer, Ghosh Sujoy, Yun Seok Joon, Vasudevan Rama, Unocic Raymond R, Olunloyo Olugbenga, Retterer Scott T, Xiao Kai, Randolph Steven J, Rack Philip D

机构信息

Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States.

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

出版信息

ACS Appl Mater Interfaces. 2024 Feb 21;16(7):9144-9154. doi: 10.1021/acsami.3c17182. Epub 2024 Feb 12.

Abstract

We demonstrate direct-write patterning of single and multilayer MoS via a focused electron beam-induced etching (FEBIE) process mediated with the XeF precursor. MoS etching is performed at various currents, areal doses, on different substrates, and characterized using scanning electron and atomic force microscopies as well as Raman and photoluminescence spectroscopies. Scanning transmission electron microscopy reveals a sub-40 nm etching resolution and the progression of point defects and lateral etching of the consequent unsaturated bonds. The results confirm that the electron beam-induced etching process is minimally invasive to the underlying material in comparison to ion beam techniques, which damage the subsurface material. Single-layer MoS field-effect transistors are fabricated, and device characteristics are compared for channels that are edited via the selected area etching process. The source-drain current at constant gate and source-drain voltage scale linearly with the edited channel width. Moreover, the mobility of the narrowest channel width decreases, suggesting that backscattered and secondary electrons collaterally affect the periphery of the removed area. Focused electron beam doses on single-layer transistors below the etching threshold were also explored as a means to modify/thin the channel layer. The FEBIE exposures showed demonstrative effects via the transistor transfer characteristics, photoluminescence spectroscopy, and Raman spectroscopy. While strategies to minimize backscattered and secondary electron interactions outside of the scanned regions require further investigation, here, we show that FEBIE is a viable approach for selective nanoscale editing of MoS devices.

摘要

我们展示了通过XeF前驱体介导的聚焦电子束诱导蚀刻(FEBIE)工艺对单层和多层MoS进行直接写入图案化。在不同电流、面剂量下,在不同衬底上进行MoS蚀刻,并使用扫描电子显微镜、原子力显微镜以及拉曼光谱和光致发光光谱进行表征。扫描透射电子显微镜揭示了低于40 nm的蚀刻分辨率以及点缺陷的进展和随之而来的不饱和键的横向蚀刻。结果证实,与会损坏次表面材料的离子束技术相比,电子束诱导蚀刻工艺对下层材料的侵入性最小。制造了单层MoS场效应晶体管,并比较了通过选定区域蚀刻工艺编辑的沟道的器件特性。在恒定栅极和源漏电压下的源漏电流与编辑后的沟道宽度呈线性比例关系。此外,最窄沟道宽度的迁移率降低,这表明背散射电子和二次电子会对去除区域的周边产生附带影响。还探索了低于蚀刻阈值的单层晶体管上的聚焦电子束剂量,作为修改/减薄沟道层的一种方法。FEBIE曝光通过晶体管转移特性、光致发光光谱和拉曼光谱显示出显著效果。虽然最小化扫描区域之外的背散射和二次电子相互作用的策略需要进一步研究,但在此我们表明FEBIE是一种用于MoS器件选择性纳米级编辑的可行方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验