Kim Songkil, Jung SungYeb, Lee Jaekwang, Kim Seokjun, Fedorov Andrei G
School of Mechanical Engineering, Pusan National University, Busan 46241, South Korea.
Department of Physics, Pusan National University, Busan 46241, South Korea.
ACS Appl Mater Interfaces. 2020 Sep 2;12(35):39595-39601. doi: 10.1021/acsami.0c11053. Epub 2020 Aug 21.
On-demand switchable "additive/subtractive" patterning of two-dimensional (2D) nanomaterials is an essential capability for developing new concepts of functional nanomaterials and their device realizations. Traditionally, this is performed a multistep process using photoresist coating and patterning by conventional photo or electron beam lithography, which is followed by bulk dry/wet etching or deposition. This limits the range of functionalities and structural topologies that can be achieved as well as increases the complexity, cost, and possibility of contamination, which are significant barriers to device fabrication from highly sensitive 2D materials. Focused electron beam-induced processing (FEBIP) enables a material chemistry/site-specific, high-resolution multimode atomic scale processing and provides unprecedented opportunities for "direct-write", single-step surface patterning of 2D nanomaterials with an imaging capability. It allows for realizing a rapid multiscale/multimode approach, ranging from an atomic scale manipulation (, targeted defect introduction as an active site) to a large-area surface modification on nano- and microscales, including patterned doping and material removal/deposition with 2D (in-plane)/three-dimensional (3D) (out-of-plane) control. In this work, we report on a new capability of FEBIP for nanoscale patterning of graphene oxide removal of oxygenated carbon moieties with no use of reactive gas required for etching complemented by carbon atom deposition using a focused electron beam. The mechanism of experimentally observed phenomena is explored using the density functional theory (DFT) calculations, revealing that interactions of e-beam that liberated reactive oxygen radicals with carbon atoms on the graphene basal plane lead to the creation of atomic vacancies in the material. The reaction byproducts are volatile carbon dioxides, which are dissociated and volatilized from the graphene oxide surface functional groups by interactions with an energetic focused electron beam. Along with selective subtractive patterning of graphene oxide, the same electron beam with increased irradiation doses can deposit out-of-plane 3D carbon nanostructures on top of or around the 2D etched pattern, thus forming a hybrid 2D/3D nanocomposite with a feature control down to a few nanometers. This dual nanofabrication capability of FEBIP is unmatched by any other nanopatterning techniques and opens a new design window for forming 2D/3D complex nanostructures and functional nanodevices.
二维(2D)纳米材料的按需切换“加性/减性”图案化是开发功能纳米材料新概念及其器件实现的一项基本能力。传统上,这是通过使用光刻胶涂层并通过传统的光或电子束光刻进行图案化的多步工艺来实现的,随后进行体干法/湿法蚀刻或沉积。这限制了可实现的功能范围和结构拓扑,同时增加了复杂性、成本和污染可能性,而这些都是从高灵敏度二维材料制造器件的重大障碍。聚焦电子束诱导加工(FEBIP)实现了材料化学/位点特异性的高分辨率多模原子尺度加工,并为二维纳米材料的“直写”单步表面图案化提供了前所未有的机会,同时具备成像能力。它允许实现一种快速的多尺度/多模方法,范围从原子尺度操作(例如,将靶向缺陷引入作为活性位点)到纳米和微米尺度的大面积表面改性,包括图案化掺杂以及二维(面内)/三维(3D)(面外)控制的材料去除/沉积。在这项工作中,我们报告了FEBIP在氧化石墨烯纳米尺度图案化方面的一项新能力,即无需使用蚀刻所需的反应气体即可去除含氧碳部分,并通过聚焦电子束进行碳原子沉积来补充。使用密度泛函理论(DFT)计算探索了实验观察到的现象的机制,结果表明,释放活性氧自由基的电子束与石墨烯基面碳原子的相互作用导致材料中产生原子空位。反应副产物是挥发性二氧化碳,它们通过与高能聚焦电子束的相互作用从氧化石墨烯表面官能团解离并挥发。除了氧化石墨烯的选择性减性图案化之外,具有增加辐照剂量的同一电子束可以在二维蚀刻图案的顶部或周围沉积面外3D碳纳米结构,从而形成具有低至几纳米特征控制的混合二维/三维纳米复合材料。FEBIP的这种双重纳米制造能力是任何其他纳米图案化技术都无法比拟的,并为形成二维/三维复杂纳米结构和功能纳米器件打开了一个新的设计窗口。