Suppr超能文献

通过优化的轻量级卷积-注意力和结构 MRI 进行阿尔茨海默病诊断。

Diagnosis of Alzheimer's disease via optimized lightweight convolution-attention and structural MRI.

机构信息

Dept. of Information and Communication Engineering, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea.

Dept. of Information and Communication Engineering, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea.

出版信息

Comput Biol Med. 2024 Mar;171:108116. doi: 10.1016/j.compbiomed.2024.108116. Epub 2024 Feb 8.

Abstract

Alzheimer's disease (AD) poses a substantial public health challenge, demanding accurate screening and diagnosis. Identifying AD in its early stages, including mild cognitive impairment (MCI) and healthy control (HC), is crucial given the global aging population. Structural magnetic resonance imaging (sMRI) is essential for understanding the brain's structural changes due to atrophy. While current deep learning networks overlook voxel long-term dependencies, vision transformers (ViT) excel at recognizing such dependencies in images, making them valuable in AD diagnosis. Our proposed method integrates convolution-attention mechanisms in transformer-based classifiers for AD brain datasets, enhancing performance without excessive computing resources. Replacing multi-head attention with lightweight multi-head self-attention (LMHSA), employing inverted residual (IRU) blocks, and introducing local feed-forward networks (LFFN) yields exceptional results. Training on AD datasets with a gradient-centralized optimizer and Adam achieves an impressive accuracy rate of 94.31% for multi-class classification, rising to 95.37% for binary classification (AD vs. HC) and 92.15% for HC vs. MCI. These outcomes surpass existing AD diagnosis approaches, showcasing the model's efficacy. Identifying key brain regions aids future clinical solutions for AD and neurodegenerative diseases. However, this study focused exclusively on the AD Neuroimaging Initiative (ADNI) cohort, emphasizing the need for a more robust, generalizable approach incorporating diverse databases beyond ADNI in future research.

摘要

阿尔茨海默病(AD)是一个重大的公共卫生挑战,需要进行准确的筛查和诊断。鉴于全球人口老龄化,识别 AD 的早期阶段,包括轻度认知障碍(MCI)和健康对照组(HC)至关重要。结构磁共振成像(sMRI)对于了解由于萎缩导致的大脑结构变化至关重要。虽然当前的深度学习网络忽略了体素的长期依赖关系,但视觉转换器(ViT)擅长识别图像中的这种依赖关系,因此在 AD 诊断中具有很高的价值。我们提出的方法在基于变压器的分类器中集成了卷积注意力机制,用于 AD 大脑数据集,在不增加计算资源的情况下提高了性能。用轻量级多头自注意力(LMHSA)替换多头注意力,使用倒残差(IRU)块,并引入局部前馈网络(LFFN),可以得到出色的结果。在具有梯度中心化优化器和 Adam 的 AD 数据集上进行训练,实现了多类分类的 94.31%的惊人准确率,对于 AD 与 HC 的二分类和 HC 与 MCI 的二分类,准确率分别提高到 95.37%和 92.15%。这些结果超过了现有的 AD 诊断方法,展示了该模型的有效性。识别关键的大脑区域有助于为 AD 和神经退行性疾病的未来临床解决方案提供帮助。然而,本研究仅关注 AD 神经影像学倡议(ADNI)队列,强调在未来的研究中需要一种更强大、更具通用性的方法,将 ADNI 之外的各种数据库纳入其中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验