Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain.
Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
Mol Metab. 2024 Mar;81:101899. doi: 10.1016/j.molmet.2024.101899. Epub 2024 Feb 10.
Pompe disease (PD) is caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA), leading to progressive glycogen accumulation and severe myopathy with progressive muscle weakness. In the Infantile-Onset PD (IOPD), death generally occurs <1 year of age. There is no cure for IOPD. Mouse models of PD do not completely reproduce human IOPD severity. Our main objective was to generate the first IOPD rat model to assess an innovative muscle-directed adeno-associated viral (AAV) vector-mediated gene therapy.
PD rats were generated by CRISPR/Cas9 technology. The novel highly myotropic bioengineered capsid AAVMYO3 and an optimized muscle-specific promoter in conjunction with a transcriptional cis-regulatory element were used to achieve robust Gaa expression in the entire muscular system. Several metabolic, molecular, histopathological, and functional parameters were measured.
PD rats showed early-onset widespread glycogen accumulation, hepato- and cardiomegaly, decreased body and tissue weight, severe impaired muscle function and decreased survival, closely resembling human IOPD. Treatment with AAVMYO3-Gaa vectors resulted in widespread expression of Gaa in muscle throughout the body, normalizing glycogen storage pathology, restoring muscle mass and strength, counteracting cardiomegaly and normalizing survival rate.
This gene therapy holds great potential to treat glycogen metabolism alterations in IOPD. Moreover, the AAV-mediated approach may be exploited for other inherited muscle diseases, which also are limited by the inefficient widespread delivery of therapeutic transgenes throughout the muscular system.
庞贝病(PD)是由溶酶体酶酸性α-葡萄糖苷酶(GAA)缺乏引起的,导致进行性糖原积累和严重的肌病,伴有进行性肌肉无力。在婴儿发病的庞贝病(IOPD)中,一般在 1 岁以内死亡。目前尚无 IOPD 的治愈方法。PD 的小鼠模型不能完全再现人类 IOPD 的严重程度。我们的主要目标是生成首个 IOPD 大鼠模型,以评估一种创新的肌肉靶向腺相关病毒(AAV)载体介导的基因治疗。
通过 CRISPR/Cas9 技术生成 PD 大鼠。新型高度肌向性生物工程化 capsid AAVMYO3 与优化的肌肉特异性启动子结合转录顺式调控元件,可在整个肌肉系统中实现 Gaa 的高效表达。测量了多种代谢、分子、组织病理学和功能参数。
PD 大鼠表现出早期广泛的糖原积累、肝和心脏肿大、体重和组织重量下降、严重的肌肉功能受损和存活率降低,与人类 IOPD 非常相似。用 AAVMYO3-Gaa 载体治疗可导致全身肌肉中广泛表达 Gaa,使糖原储存病理正常化,恢复肌肉质量和力量,对抗心脏肿大并使存活率正常化。
这种基因治疗有可能治疗 IOPD 中的糖原代谢改变。此外,AAV 介导的方法可用于其他遗传性肌肉疾病,这些疾病也受到治疗性转基因在整个肌肉系统中低效广泛传递的限制。