Suppr超能文献

Meta-lasso:微创手术后感染预测的新见解。

Meta-lasso: new insight on infection prediction after minimally invasive surgery.

机构信息

Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 West Huaihai Road, 200030, Shanghai, China.

School of Computer Science, Shanghai University, 99 Shangda Road, 200044, Shanghai, China.

出版信息

Med Biol Eng Comput. 2024 Jun;62(6):1703-1715. doi: 10.1007/s11517-024-03027-w. Epub 2024 Feb 13.

Abstract

Surgical site infection (SSI) after minimally invasive lung cancer surgery constitutes an important factor influencing the direct and indirect economic implications, patient prognosis, and the 5-year survival rate for early-stage lung cancer patients. In the realm of predictive healthcare, machine learning algorithms have been instrumental in anticipating various surgical outcomes, including SSI. However, accurately predicting infection after minimally invasive surgery remains a clinical challenge due to the multitude of physiological and surgical factors associated with it. Furthermore, clinical patient data, in addition to being high-dimensional, often exists the long-tail problem, posing difficulties for traditional machine learning algorithms in effectively processing such data. Based on this insight, we propose a novel approach called meta-lasso for infection prediction following minimally invasive surgery. Our approach leverages the sparse learning algorithm lasso regression to select informative features and introduces a meta-learning framework to mitigate bias towards the dominant class. We conducted a retrospective cohort study on patients who had undergone minimally invasive surgery for lung cancer at Shanghai Chest Hospital between 2018 and 2020. The evaluation encompassed key performance metrics, including sensitivity, specificity, precision (PPV), negative predictive value (NPV), and accuracy. Our approach has surpassed the performance of logistic regression, random forest, Naive Bayes classifier, gradient boosting decision tree, ANN, and lasso regression, with sensitivity at 0.798, specificity at 0.779, precision at 0.789, NPV at 0.798, and accuracy at 0.788 and has greatly improved the classification performance of the inferior class.

摘要

微创肺癌手术后的手术部位感染(SSI)是影响直接和间接经济影响、患者预后以及早期肺癌患者 5 年生存率的重要因素。在预测性医疗保健领域,机器学习算法在预测各种手术结果(包括 SSI)方面发挥了重要作用。然而,由于与微创相关的生理和手术因素众多,准确预测感染仍然是一个临床挑战。此外,临床患者数据不仅具有高维性,而且经常存在长尾问题,这使得传统的机器学习算法难以有效处理此类数据。基于这一洞察,我们提出了一种名为元套索(meta-lasso)的新方法,用于预测微创手术后的感染。我们的方法利用稀疏学习算法套索回归选择信息丰富的特征,并引入元学习框架来减轻对优势类别的偏见。我们对 2018 年至 2020 年在上海胸科医院接受微创肺癌手术的患者进行了回顾性队列研究。评估包括关键性能指标,包括敏感性、特异性、精度(PPV)、阴性预测值(NPV)和准确性。我们的方法在敏感性为 0.798、特异性为 0.779、精度为 0.789、NPV 为 0.798 和准确性为 0.788 时,超过了逻辑回归、随机森林、朴素贝叶斯分类器、梯度提升决策树、ANN 和套索回归的性能,并且大大提高了低等级的分类性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验