Suppr超能文献

机器学习与外科手术结局预测:系统评价。

Machine Learning and Surgical Outcomes Prediction: A Systematic Review.

机构信息

Division of Plastic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania.

Division of Plastic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

J Surg Res. 2021 Aug;264:346-361. doi: 10.1016/j.jss.2021.02.045. Epub 2021 Apr 10.

Abstract

BACKGROUND

Machine learning (ML) has garnered increasing attention as a means to quantitatively analyze the growing and complex medical data to improve individualized patient care. We herein aim to critically examine the current state of ML in predicting surgical outcomes, evaluate the quality of currently available research, and propose areas of improvement for future uses of ML in surgery.

METHODS

A systematic review was conducted in accordance with the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) checklist. PubMed, MEDLINE, and Embase databases were reviewed under search syntax "machine learning" and "surgery" for papers published between 2015 and 2020.

RESULTS

Of the initial 2677 studies, 45 papers met inclusion and exclusion criteria. Fourteen different subspecialties were represented with neurosurgery being most common. The most frequently used ML algorithms were random forest (n = 19), artificial neural network (n = 17), and logistic regression (n = 17). Common outcomes included postoperative mortality, complications, patient reported quality of life and pain improvement. All studies which compared ML algorithms to conventional studies which used area under the curve (AUC) to measure accuracy found improved outcome prediction with ML models.

CONCLUSIONS

While still in its early stages, ML models offer surgeons an opportunity to capitalize on the myriad of clinical data available and improve individualized patient care. Limitations included heterogeneous outcome and imperfect quality of some of the papers. We therefore urge future research to agree upon methods of outcome reporting and require basic quality standards.

摘要

背景

机器学习 (ML) 作为一种定量分析不断增长和复杂的医疗数据以改善个体化患者护理的方法,越来越受到关注。我们旨在批判性地评估当前 ML 在预测手术结果中的应用,评估当前研究的质量,并提出未来在手术中使用 ML 的改进领域。

方法

根据系统评价和荟萃分析的首选报告项目 (PRISMA) 检查表进行系统评价。在搜索语法“机器学习”和“手术”下,在 PubMed、MEDLINE 和 Embase 数据库中审查了 2015 年至 2020 年期间发表的论文。

结果

最初的 2677 项研究中,有 45 篇符合纳入和排除标准。有 14 个不同的亚专科,其中神经外科最常见。使用最多的 ML 算法是随机森林 (n = 19)、人工神经网络 (n = 17) 和逻辑回归 (n = 17)。常见的结果包括术后死亡率、并发症、患者报告的生活质量和疼痛改善。所有将 ML 算法与使用曲线下面积 (AUC) 来衡量准确性的传统研究进行比较的研究都发现,ML 模型可以提高结果预测的准确性。

结论

虽然仍处于早期阶段,但 ML 模型为外科医生提供了一个利用大量临床数据的机会,并改善个体化患者护理。限制包括结果的异质性和一些论文的不完善质量。因此,我们敦促未来的研究在报告结果的方法上达成一致,并要求达到基本的质量标准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验