College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
Environ Sci Technol. 2024 Feb 27;58(8):4008-4018. doi: 10.1021/acs.est.3c09579. Epub 2024 Feb 12.
The electrocatalytic hydrodehalogenation (EHDH) process mediated by atomic hydrogen (H*) is recognized as an efficient method for degrading halogenated organic pollutants (HOPs). However, a significant challenge is the excessive energy consumption resulting from the recombination of H* to H production in the EHDH process. In this study, a promising strategy was proposed to generate piezo-induced atomic H*, without external energy input or chemical consumption, for the degradation and dehalogenation of HOPs. Specifically, sub-5 nm Ni nanoparticles were subtly dotted on an N-doped carbon layer coating on BaTiO cube, and the resulted hybrid nanocomposite (Ni-NC@BTO) can effectively break C-X (X = Cl and F) bonds under ultrasonic vibration or mechanical stirring, demonstrating high piezoelectric driven dehalogenation efficiencies toward various HOPs. Mechanistic studies revealed that the dotted Ni nanoparticles can efficiently capture H* to form Ni-H* (H) and drive the dehalogenation process to lower the toxicity of intermediates. COMSOL simulations confirmed a "chimney effect" on the interface of Ni nanoparticle, which facilitated the accumulation of H and enhanced electron transfer for H* formation by improving the surface charge of the piezocatalyst and strengthening the interfacial electric field. Our work introduces an environmentally friendly dehalogenation method for HOPs using the piezoelectric process independent of the external energy input and chemical consumption.
原子氢(H*)介导的电催化加氢脱卤(EHDH)过程被认为是降解卤代有机污染物(HOPs)的有效方法。然而,一个显著的挑战是 EHDH 过程中 H的复合产生 H 会导致能量消耗过多。在这项研究中,提出了一种有前途的策略,即在没有外部能量输入或化学消耗的情况下,通过产生压致原子 H来降解和脱卤 HOPs。具体来说,将亚 5nm 的 Ni 纳米颗粒巧妙地点缀在 BaTiO3 立方体上的 N 掺杂碳层涂层上,所得的混合纳米复合材料(Ni-NC@BTO)可以在超声振动或机械搅拌下有效地打破 C-X(X=Cl 和 F)键,对各种 HOPs 表现出高的压电驱动脱卤效率。机理研究表明,点缀的 Ni 纳米颗粒可以有效地捕获 H形成 Ni-H(H)并驱动脱卤过程,降低中间产物的毒性。COMSOL 模拟证实了 Ni 纳米颗粒界面上的“烟囱效应”,通过提高压敏催化剂的表面电荷和增强界面电场,促进了 H 的积累并增强了 H*的形成的电子转移。我们的工作引入了一种使用压电过程的环保型 HOPs 脱卤方法,该方法不依赖于外部能量输入和化学消耗。