Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami Ku, Hiroshima City, 732-0815, Japan.
Expert Advisor, Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami Ku, Hiroshima City, 732-0815, Japan.
Radiat Res. 2024 Apr 1;201(4):304-309. doi: 10.1667/RADE-23-00122.1.
In radiation risk estimation based on the Radiation Effects Research Foundation (RERF) cohort studies, one common analysis is Poisson regression on radiation dose and background and effect modifying variables of an aggregate endpoint such as all solid cancer incidence or all non-cancer mortality. As currently performed, these analyses require selection of a surrogate radiation organ dose, (e.g., colon dose), which could conceptually be problematic since the aggregate endpoint comprises events arising from a variety of organs. We use maximum likelihood theory to compare inference from the usual aggregate endpoint analysis to analyses based on joint analysis. These two approaches are also compared in a re-analysis of RERF Life Span Study all cancer mortality. We show that, except for a trivial difference, these two analytic approaches yield identical inference with respect to radiation dose response and background and effect modification when based on a single surrogate organ radiation dose. When repeating the analysis with organ-specific doses, an interesting issue of bias in intercept parameters arises when dose estimates are undefined for one sex when sex-specific outcomes are included in the aggregate endpoint, but a simple correction will avoid this issue. Lastly, while the joint analysis formulation allows use of organ-specific doses, the interpretation of such an analysis for inference regarding an aggregate endpoint can be problematic. To the extent that analysis of radiation risk for an aggregate endpoint is of interest, the joint-analysis formulation with a single surrogate dose is an appropriate analytic approach, whereas joint analysis with organ-specific doses may only be interpretable if endpoints are considered separately for estimating dose response. However, for neither approach is inference about dose response well defined.
在基于放射影响研究所(RERF)队列研究的辐射风险估计中,一种常见的分析方法是对辐射剂量以及总体终点(如所有实体癌发病率或所有非癌症死亡率)的背景和效应修正变量进行泊松回归。目前的方法要求选择一个替代辐射器官剂量(例如,结肠剂量),这从概念上讲可能存在问题,因为总体终点包括来自各种器官的事件。我们使用最大似然理论比较了通常的总体终点分析与基于联合分析的推断。我们还在 RERF 寿命研究所有癌症死亡率的重新分析中比较了这两种方法。我们表明,除了微不足道的差异外,当基于单个替代器官辐射剂量时,这两种分析方法在辐射剂量反应以及背景和效应修正方面的推断结果是相同的。当使用特定器官的剂量重复分析时,当特定性别结局包含在总体终点中时,对于一种性别,剂量估计值定义不当时,截距参数会出现有趣的偏差问题,但简单的校正可以避免这个问题。最后,虽然联合分析公式允许使用特定器官的剂量,但对于总体终点的推断,这种分析的解释可能存在问题。在对总体终点的辐射风险进行分析的情况下,具有单个替代剂量的联合分析公式是一种合适的分析方法,而具有特定器官剂量的联合分析可能只有在分别考虑终点来估计剂量反应时才具有可解释性。但是,对于这两种方法,关于剂量反应的推断都没有得到很好的定义。