Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami Ku, Hiroshima City, 732-0815, Japan.
Sci Rep. 2024 Nov 5;14(1):26750. doi: 10.1038/s41598-024-76920-x.
In estimating radiation-related risk of cancer and other diseases based on the RERF Life Span Study (LSS), joint analyses can be performed where multiple health outcome endpoints are combined in the same model, allowing some parameters to be estimated in common among all endpoints with possible increase in precision of radiation risk and other model parameter estimates. Using as a basis excess relative risk (ERR) and excess absolute risk (EAR) models of the type commonly used in analysis of LSS data at RERF, we use maximum likelihood theory to compute the asymptotic relative standard error of endpoint-specific radiation effect and other parameter estimates using joint analyses as compared to traditional independent analysis. We show that some gains in precision of endpoint-specific radiation risk parameter estimates can be achieved by sharing effect modifier and other model parameters, but only small or negligible gains in precision are achieved for endpoint-specific background modifying or effect modifying parameters when other model parameters are shared. The magnitude of the precision gain for radiation risk estimates depends on the number of endpoints, the baseline incidence rate of the endpoint, and the type of model being used.
在基于放射物相关风险的 RERF 寿命研究(LSS)的癌症和其他疾病估计中,联合分析可以在同一个模型中组合多个健康结果终点,允许一些参数在所有终点之间共同估计,从而可能提高放射风险和其他模型参数估计的精度。使用 RERF 中常用于 LSS 数据分析的超额相对风险(ERR)和超额绝对风险(EAR)模型作为基础,我们使用最大似然理论来计算终点特异性放射效应的渐近相对标准误差和其他参数估计值,与传统的独立分析相比,使用联合分析。我们表明,通过共享效应修饰符和其他模型参数,可以提高终点特异性放射风险参数估计的精度,但当共享其他模型参数时,对于终点特异性背景修饰或效应修饰参数,只能获得较小或可忽略的精度提高。对于放射风险估计的精度增益的大小取决于终点的数量、终点的基线发生率和所使用的模型类型。