文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用新型陶瓷打印机打印的 3Y-TZP 氧化锆的双轴弯曲强度。

Biaxial flexural strength of 3D-printed 3Y-TZP zirconia using a novel ceramic printer.

机构信息

Department of Prosthodontics, University Clinic Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany.

出版信息

Clin Oral Investig. 2024 Feb 13;28(2):145. doi: 10.1007/s00784-024-05533-5.


DOI:10.1007/s00784-024-05533-5
PMID:38351386
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10864574/
Abstract

OBJECTIVES: To compare the strength and reliability of 3D-printed 3Y-TZP zirconia manufactured with various printing orientations and staining. MATERIALS AND METHODS: A total of one-hundred cylindrical zirconia specimens were designed and fabricated using 3D printing and processed according to ISO 6872 standards. Of these specimens, 80 were 3D printed using the new ZIPRO-D (ZD) 3D ceramic printer. In this ZD group, 60 specimens were printed in a vertical orientation and were either stained after debinding (ZD1, x-orientation, n = 20) or not stained (ZD2, x-orientation, n = 20; ZD3, y-orientation, n = 20) and the remaining 20 specimens out of n = 80 were printed in a horizontal orientation (ZD4). Further 20 specimens out of the entire sample N = 100 were printed vertically with the CeraFab7500 3D ceramic printer (LC). All completed specimens were loaded until fracture using a universal testing machine. Biaxial flexural strengths and Weibull parameters were computed for the ZD groups and for the LC group. Group and sub-group effects were evaluated using Welch ANOVA (alpha = 0.05). RESULTS: The mean (standard deviation, SD) biaxial flexural strengths of vertically oriented ZD samples with (ZD1) and without (ZD2/ZD3) staining were 811 (197) and 850 (152) MPa, respectively (p > 0.05). The ZD4 (horizontally printed), 1107 (144) MPa, and LC (1238 (327)) MPa samples had higher mean (SD) flexural strengths than the ZD1-3 specimens. No difference was observed between the ZD4 and LC group (p > 0.05). Weibull moduli were between m = 4.6 (ZD1) and 9.1 (ZD4) in the ZD group and m = 3.5 in the LC group. CONCLUSIONS: All tested 3D-printed zirconia specimens exceeded the flexural strengths required for class 5 restorations according to ISO 6872 standards. While the flexural strengths of zirconia printed using the novel ZD device in the vertical orientation are lower than those of zirconia printed using the LC printer, the ZD printer shows at least comparable reliability. CLINICAL RELEVANCE: 3D-printing of zirconia is a new technology in dental application. Based on the presented strengths values, clinical application of 3D-printed zirconia for fixed dental protheses can be recommended.

摘要

目的:比较不同打印方向和染色的 3D 打印 3Y-TZP 氧化锆的强度和可靠性。

材料和方法:共设计和制作了 100 个圆柱形氧化锆样本,使用 3D 打印,并按照 ISO 6872 标准进行加工。其中 80 个样本使用新型 ZIPRO-D(ZD)3D 陶瓷打印机进行 3D 打印。在 ZD 组中,60 个样本采用垂直方向打印,其中 30 个样本在脱胶后染色(ZD1,x 方向,n=20),30 个样本不染色(ZD2,x 方向,n=20;ZD3,y 方向,n=20),剩余 20 个样本(n=80)采用水平方向打印(ZD4)。另外 20 个样本(n=100)在整个样本 N=100 中使用 CeraFab7500 3D 陶瓷打印机(LC)垂直打印。所有完成的样本都使用万能试验机加载至断裂。计算 ZD 组和 LC 组的双轴弯曲强度和威布尔参数。使用 Welch ANOVA(alpha=0.05)评估组和子组的效果。

结果:经染色(ZD1)和未经染色(ZD2/ZD3)的垂直定向 ZD 样本的平均(标准偏差,SD)双轴弯曲强度分别为 811(197)和 850(152)MPa(p>0.05)。ZD4(水平打印)、1107(144)MPa 和 LC(1238(327))MPa 样本的平均弯曲强度高于 ZD1-3 样本。ZD4 组和 LC 组之间没有观察到差异(p>0.05)。ZD 组的威布尔模数在 m=4.6(ZD1)和 9.1(ZD4)之间,LC 组的威布尔模数为 m=3.5。

结论:根据 ISO 6872 标准,所有测试的 3D 打印氧化锆样本均超过了 5 类修复体所需的弯曲强度。虽然使用新型 ZD 设备在垂直方向打印的氧化锆的弯曲强度低于使用 LC 打印机打印的氧化锆,但 ZD 打印机的可靠性至少相当。

临床相关性:氧化锆的 3D 打印是牙科应用中的一项新技术。基于所呈现的强度值,可以推荐 3D 打印氧化锆用于固定牙科修复体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/6cbf96c65d79/784_2024_5533_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/63d3694bc4f2/784_2024_5533_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/3ee6cbf5748e/784_2024_5533_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/b0450b1a1347/784_2024_5533_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/5aa487caf194/784_2024_5533_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/4be5b86c7dbd/784_2024_5533_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/65005493c00f/784_2024_5533_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/2acb6dabebcd/784_2024_5533_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/6cbf96c65d79/784_2024_5533_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/63d3694bc4f2/784_2024_5533_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/3ee6cbf5748e/784_2024_5533_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/b0450b1a1347/784_2024_5533_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/5aa487caf194/784_2024_5533_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/4be5b86c7dbd/784_2024_5533_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/65005493c00f/784_2024_5533_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/2acb6dabebcd/784_2024_5533_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3417/10864574/6cbf96c65d79/784_2024_5533_Fig8_HTML.jpg

相似文献

[1]
Biaxial flexural strength of 3D-printed 3Y-TZP zirconia using a novel ceramic printer.

Clin Oral Investig. 2024-2-13

[2]
Strength and reliability of zirconia fabricated by additive manufacturing technology.

Dent Mater. 2022-10

[3]
Effect of firing time and wall thickness on the biaxial flexural strength of 3D-printed zirconia.

Dent Mater. 2024-3

[4]
Comparative analysis of flexural strength of 3D printed and milled 4Y-TZP and 3Y-TZP zirconia.

J Prosthet Dent. 2024-3

[5]
Effect of airborne particle abrasion and regeneration firing on the strength of 3D-printed 3Y and 5Y zirconia ceramics.

Dent Mater. 2024-1

[6]
Chemical Composition and Flexural Strength Discrepancies Between Milled and Lithography-Based Additively Manufactured Zirconia.

J Prosthodont. 2022-12

[7]
Effect of printing layer orientation and polishing on the fatigue strength of 3D-printed dental zirconia.

Dent Mater. 2024-2

[8]
Impact of post printing cleaning methods on geometry, transmission, roughness parameters, and flexural strength of 3D-printed zirconia.

Dent Mater. 2023-7

[9]
Increasing dental zirconia micro-retentive aspect through ultra-short pulsed laser microstructuring: study on flexural strength and crystal phase characterization.

Clin Oral Investig. 2022-1

[10]
Biaxial flexural strength, crystalline structure, and grain size of new commercially available zirconia-based ceramics for dental appliances produced using a new slip-casting method.

J Mech Behav Biomed Mater. 2021-2

引用本文的文献

[1]
Effects of Repeated Use and Sterilization on the Wear of Zirconia Implant Drills: A SEM-Based Analysis.

Clin Exp Dent Res. 2025-2

[2]
Biaxial Flexural Strength and Vickers Hardness of 3D-Printed and Milled 5Y Partially Stabilized Zirconia.

J Funct Biomater. 2025-1-20

[3]
Bond Strength of Milled and Printed Zirconia to 10-Methacryloyloxydecyl Dihydrogen Phosphate (10-MDP) Resin Cement as a Function of Ceramic Conditioning, Disinfection and Ageing.

Materials (Basel). 2024-5-5

[4]
Fracture Resistance of 3D-Printed Occlusal Veneers Made from 3Y-TZP Zirconia.

Materials (Basel). 2024-4-30

本文引用的文献

[1]
Impact of post printing cleaning methods on geometry, transmission, roughness parameters, and flexural strength of 3D-printed zirconia.

Dent Mater. 2023-7

[2]
Fit of anterior restorations made of 3D-printed and milled zirconia: An in-vitro study.

J Dent. 2023-3

[3]
Strength and reliability of zirconia fabricated by additive manufacturing technology.

Dent Mater. 2022-10

[4]
Rinsing postprocessing procedure of a 3D-printed orthodontic appliance material: Impact of alternative post-rinsing solutions on the roughness, flexural strength and cytotoxicity.

Dent Mater. 2022-8

[5]
The Flexural Strength and Flexural Modulus of Stereolithography Additively Manufactured Zirconia with Different Porosities.

J Prosthodont. 2022-6

[6]
Additively Manufactured Zirconia for Dental Applications.

Materials (Basel). 2021-7-1

[7]
3D Printing in Digital Prosthetic Dentistry: An Overview of Recent Developments in Additive Manufacturing.

J Clin Med. 2021-5-7

[8]
Ceramic Printing - Comparative Study of the Flexural Strength of 3D Printed and Milled Zirconia.

Int J Prosthodont. 2022

[9]
Influence of coloring liquid immersion on flexural strength, Vickers hardness, and color of zirconia.

J Prosthet Dent. 2021-10

[10]
Flexural strength and Weibull characteristics of stereolithography additive manufactured versus milled zirconia.

J Prosthet Dent. 2021-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索