Suppr超能文献

一种用于过度分散数据的单参数离散分布:统计和可靠性特性及其应用

A one-parameter discrete distribution for over-dispersed data: statistical and reliability properties with applications.

作者信息

Eliwa M S, El-Morshedy M

机构信息

Misr Higher Institute for Commerce and Computers, Science and Technology Academy, Mansoura, Egypt.

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt.

出版信息

J Appl Stat. 2021 Mar 30;49(10):2467-2487. doi: 10.1080/02664763.2021.1905787. eCollection 2022.

Abstract

In the literature of distribution theory, a vast proportion is acquired by discrete distributions and their applications in real-world phenomena. However, in a rapidly changing technological era, the data generated is becoming increasingly complex day by day, making it difficult for us to capture various aspects of this real data through existing discrete models. In view of this, we propose a new flexible discrete distribution with one parameter. Some statistical and reliability are derived. These properties can be expressed as closed-forms. One of the important virtues of this newly evolved model is that it can model not only over-dispersed, positively skewed and leptokurtic data sets, but it can also be utilized for modeling increasing, decreasing and unimodal failure rate. Various estimation approaches are utilized to estimate the model parameter. A simulation study is carried out to examine the performance of the estimators for different sample size. The flexibility of the new model for analyzing different types of data is explained by utilizing four real data sets in different fields. Finally, the proposed model can serve as an alternative model to other distributions in the existing literature for modeling positive real data in several areas.

摘要

在分布理论的文献中,很大一部分是关于离散分布及其在现实世界现象中的应用。然而,在快速变化的技术时代,所产生的数据日益复杂,使得我们难以通过现有的离散模型捕捉这种真实数据的各个方面。有鉴于此,我们提出了一种新的单参数灵活离散分布。推导了一些统计量和可靠性指标。这些性质可以表示为封闭形式。这个新发展模型的一个重要优点是,它不仅可以对过度分散、正偏态和尖峰厚尾的数据集进行建模,还可以用于对递增、递减和单峰失效率进行建模。采用了各种估计方法来估计模型参数。进行了一项模拟研究,以检验不同样本量下估计量的性能。通过使用不同领域的四个真实数据集,解释了新模型在分析不同类型数据方面的灵活性。最后,所提出的模型可以作为现有文献中其他分布的替代模型,用于对多个领域的正实数据进行建模。

相似文献

1
A one-parameter discrete distribution for over-dispersed data: statistical and reliability properties with applications.
J Appl Stat. 2021 Mar 30;49(10):2467-2487. doi: 10.1080/02664763.2021.1905787. eCollection 2022.
2
A new two-parameter exponentiated discrete Lindley distribution: properties, estimation and applications.
J Appl Stat. 2019 Jul 8;47(2):354-375. doi: 10.1080/02664763.2019.1638893. eCollection 2020.
3
A discrete analogue of odd Weibull-G family of distributions: properties, classical and Bayesian estimation with applications to count data.
J Appl Stat. 2021 May 24;49(11):2928-2952. doi: 10.1080/02664763.2021.1928018. eCollection 2022.
4
Poisson XLindley Distribution for Count Data: Statistical and Reliability Properties with Estimation Techniques and Inference.
Comput Intell Neurosci. 2022 Apr 13;2022:6503670. doi: 10.1155/2022/6503670. eCollection 2022.
6
Exponentiated odd Chen-G family of distributions: statistical properties, Bayesian and non-Bayesian estimation with applications.
J Appl Stat. 2020 Jun 23;48(11):1948-1974. doi: 10.1080/02664763.2020.1783520. eCollection 2021.
7
A discrete analog of Gumbel distribution: properties, parameter estimation and applications.
J Appl Stat. 2020 Mar 24;48(4):712-737. doi: 10.1080/02664763.2020.1744538. eCollection 2021.
9
A weighted negative binomial Lindley distribution with applications to dispersed data.
An Acad Bras Cienc. 2018 Jul-Sep;90(3):2617-2642. doi: 10.1590/0001-3765201820170733.
10
A new two-parameter over-dispersed discrete distribution with mathematical properties, estimation, regression model and applications.
Heliyon. 2024 Aug 23;10(17):e36764. doi: 10.1016/j.heliyon.2024.e36764. eCollection 2024 Sep 15.

引用本文的文献

2
The zero-and-plus/minus-one inflated extended-Poisson distribution.
J Appl Stat. 2023 Sep 27;51(11):2062-2089. doi: 10.1080/02664763.2023.2260570. eCollection 2024.
3
The balanced discrete Burr-Hatke model and mixing INAR(1) process: properties, estimation, forecasting and COVID-19 applications.
J Appl Stat. 2023 Mar 27;51(7):1227-1250. doi: 10.1080/02664763.2023.2194582. eCollection 2024.
4
A discrete analogue of odd Weibull-G family of distributions: properties, classical and Bayesian estimation with applications to count data.
J Appl Stat. 2021 May 24;49(11):2928-2952. doi: 10.1080/02664763.2021.1928018. eCollection 2022.
5
A new statistical approach to model the counts of novel coronavirus cases.
Math Sci (Karaj). 2022;16(1):37-50. doi: 10.1007/s40096-021-00390-9. Epub 2021 Mar 16.
6
Poisson XLindley Distribution for Count Data: Statistical and Reliability Properties with Estimation Techniques and Inference.
Comput Intell Neurosci. 2022 Apr 13;2022:6503670. doi: 10.1155/2022/6503670. eCollection 2022.

本文引用的文献

1
A new two-parameter exponentiated discrete Lindley distribution: properties, estimation and applications.
J Appl Stat. 2019 Jul 8;47(2):354-375. doi: 10.1080/02664763.2019.1638893. eCollection 2020.
2
Exponentiated odd Chen-G family of distributions: statistical properties, Bayesian and non-Bayesian estimation with applications.
J Appl Stat. 2020 Jun 23;48(11):1948-1974. doi: 10.1080/02664763.2020.1783520. eCollection 2021.
3
A new statistical approach to model the counts of novel coronavirus cases.
Math Sci (Karaj). 2022;16(1):37-50. doi: 10.1007/s40096-021-00390-9. Epub 2021 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验