Suppr超能文献

DNA扩散:利用生成模型通过合成调控元件控制染色质可及性和基因表达

DNA-Diffusion: Leveraging Generative Models for Controlling Chromatin Accessibility and Gene Expression via Synthetic Regulatory Elements.

作者信息

DaSilva Lucas Ferreira, Senan Simon, Patel Zain Munir, Janardhan Reddy Aniketh, Gabbita Sameer, Nussbaum Zach, Valdez Córdova César Miguel, Wenteler Aaron, Weber Noah, Tunjic Tin M, Ahmad Khan Talha, Li Zelun, Smith Cameron, Bejan Matei, Karmel Louis Lithin, Cornejo Paola, Connell Will, Wong Emily S, Meuleman Wouter, Pinello Luca

机构信息

Department of Pathology, Harvard Medical School, Boston, MA, USA.

Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.

出版信息

bioRxiv. 2024 Feb 1:2024.02.01.578352. doi: 10.1101/2024.02.01.578352.

Abstract

The challenge of systematically modifying and optimizing regulatory elements for precise gene expression control is central to modern genomics and synthetic biology. Advancements in generative AI have paved the way for designing synthetic sequences with the aim of safely and accurately modulating gene expression. We leverage diffusion models to design context-specific DNA regulatory sequences, which hold significant potential toward enabling novel therapeutic applications requiring precise modulation of gene expression. Our framework uses a cell type-specific diffusion model to generate synthetic 200 bp regulatory elements based on chromatin accessibility across different cell types. We evaluate the generated sequences based on key metrics to ensure they retain properties of endogenous sequences: transcription factor binding site composition, potential for cell type-specific chromatin accessibility, and capacity for sequences generated by DNA diffusion to activate gene expression in different cell contexts using state-of-the-art prediction models. Our results demonstrate the ability to robustly generate DNA sequences with cell type-specific regulatory potential. DNA-Diffusion paves the way for revolutionizing a regulatory modulation approach to mammalian synthetic biology and precision gene therapy.

摘要

系统地修改和优化调控元件以实现精确的基因表达控制,这一挑战是现代基因组学和合成生物学的核心。生成式人工智能的进展为设计合成序列铺平了道路,目的是安全、准确地调节基因表达。我们利用扩散模型来设计特定于上下文的DNA调控序列,这对于实现需要精确调节基因表达的新型治疗应用具有巨大潜力。我们的框架使用细胞类型特异性扩散模型,根据不同细胞类型的染色质可及性生成合成的200bp调控元件。我们根据关键指标评估生成的序列,以确保它们保留内源序列的特性:转录因子结合位点组成、细胞类型特异性染色质可及性潜力,以及使用最先进的预测模型,DNA扩散生成的序列在不同细胞环境中激活基因表达的能力。我们的结果证明了能够稳健地生成具有细胞类型特异性调控潜力的DNA序列。DNA扩散为彻底改变哺乳动物合成生物学和精确基因治疗的调控调节方法铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b902/10862870/3727c0023677/nihpp-2024.02.01.578352v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验