Słabońska Joanna, Sappati Subrahmanyam, Marciniak Antoni, Czub Jacek
Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland.
BioTechMed Center, Gdańsk University of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland.
ACS Med Chem Lett. 2024 Jan 8;15(2):265-269. doi: 10.1021/acsmedchemlett.3c00509. eCollection 2024 Feb 8.
The role of short strong hydrogen bonds (SSHBs) in ligand-target binding remains largely unexplored, thereby hindering a potentially important avenue in rational drug design. Here we investigate the interaction between the antituberculosis drug bedaquiline (Bq) and the mycobacterial ATP synthase to unravel the role of a specific hydrogen bond to a conserved acidic residue in the target affinity and specificity. Our ab initio molecular dynamics simulations reveal that this bond belongs to the SSHB category and accounts for a substantial fraction of the target binding free energy. We also demonstrate that the presence of an extra acidic residue, i.e., aspartic acid at position 32 (D32), found exclusively in mycobacteria, cooperatively enhances the HB strength, ensuring specificity for the mycobacterial target. Consistently, we show that the removal of D32 markedly weakens the affinity, leading to Bq resistance associated with mutations of D32 to nonacidic residues. By designing simple Bq analogs, we then explore the possibility to overcome the resistance and potentially broaden the Bq antimicrobial spectrum by making the SSHB independent of the presence of the extra acidic residue.
短程强氢键(SSHBs)在配体-靶点结合中的作用在很大程度上仍未得到探索,从而阻碍了合理药物设计中一条潜在的重要途径。在此,我们研究抗结核药物贝达喹啉(Bq)与分枝杆菌ATP合酶之间的相互作用,以阐明特定氢键对靶点亲和力和特异性中一个保守酸性残基的作用。我们的从头算分子动力学模拟表明,该键属于SSHB类别,并占靶点结合自由能的很大一部分。我们还证明,仅在分枝杆菌中发现的额外酸性残基,即32位的天冬氨酸(D32),协同增强了氢键强度,确保了对分枝杆菌靶点的特异性。一致地,我们表明去除D32会显著削弱亲和力,导致与D32突变为非酸性残基相关的Bq耐药性。通过设计简单的Bq类似物,我们接着探索克服耐药性并通过使SSHB独立于额外酸性残基的存在而潜在拓宽Bq抗菌谱的可能性。