Suppr超能文献

使用合成数据训练基于深度学习的数字减影血管造影方法。

Training of a deep learning based digital subtraction angiography method using synthetic data.

机构信息

Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), Heidelberg, Germany.

School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, China.

出版信息

Med Phys. 2024 Jul;51(7):4793-4810. doi: 10.1002/mp.16973. Epub 2024 Feb 14.

Abstract

BACKGROUND

Digital subtraction angiography (DSA) is a fluoroscopy method primarily used for the diagnosis of cardiovascular diseases (CVDs). Deep learning-based DSA (DDSA) is developed to extract DSA-like images directly from fluoroscopic images, which helps in saving dose while improving image quality. It can also be applied where C-arm or patient motion is present and conventional DSA cannot be applied. However, due to the lack of clinical training data and unavoidable artifacts in DSA targets, current DDSA models still cannot satisfactorily display specific structures, nor can they predict noise-free images.

PURPOSE

In this study, we propose a strategy for producing abundant synthetic DSA image pairs in which synthetic DSA targets are free of typical artifacts and noise commonly found in conventional DSA targets for DDSA model training.

METHODS

More than 7,000 forward-projected computed tomography (CT) images and more than 25,000 synthetic vascular projection images were employed to create contrast-enhanced fluoroscopic images and corresponding DSA images, which were utilized as DSA image pairs for training of the DDSA networks. The CT projection images and vascular projection images were generated from eight whole-body CT scans and 1,584 3D vascular skeletons, respectively. All vessel skeletons were generated with stochastic Lindenmayer systems. We trained DDSA models on this synthetic dataset and compared them to the trainings on a clinical DSA dataset, which contains nearly 4,000 fluoroscopic x-ray images obtained from different models of C-arms.

RESULTS

We evaluated DDSA models on clinical fluoroscopic data of different anatomies, including the leg, abdomen, and heart. The results on leg data showed for different methods that training on synthetic data performed similarly and sometimes outperformed training on clinical data. The results on abdomen and cardiac data demonstrated that models trained on synthetic data were able to extract clearer DSA-like images than conventional DSA and models trained on clinical data. The models trained on synthetic data consistently outperformed their clinical data counterparts, achieving higher scores in the quantitative evaluation of peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) metrics for DDSA images, as well as accuracy, precision, and Dice scores for segmentation of the DDSA images.

CONCLUSIONS

We proposed an approach to train DDSA networks with synthetic DSA image pairs and extract DSA-like images from contrast-enhanced x-ray images directly. This is a potential tool to aid in diagnosis.

摘要

背景

数字减影血管造影(DSA)是一种透视方法,主要用于心血管疾病(CVDs)的诊断。基于深度学习的 DSA(DDSA)是为了直接从透视图像中提取 DSA 样图像而开发的,这有助于在提高图像质量的同时节省剂量。它还可以应用于 C 臂或患者运动的地方,而传统的 DSA 无法应用。然而,由于缺乏临床训练数据和 DSA 目标中不可避免的伪影,当前的 DDSA 模型仍然不能令人满意地显示特定结构,也不能预测无噪声的图像。

目的

在本研究中,我们提出了一种策略,用于生成大量的合成 DSA 图像对,其中合成 DSA 目标没有传统 DSA 目标中常见的典型伪影和噪声,用于 DDSA 模型训练。

方法

使用超过 7000 次正向投影计算机断层扫描(CT)图像和超过 25000 次合成血管投影图像来创建对比度增强的透视图像和相应的 DSA 图像,这些图像作为 DSA 图像对用于训练 DDSA 网络。CT 投影图像和血管投影图像分别由 8 个全身 CT 扫描和 1584 个 3D 血管骨架生成。所有的血管骨架都是用随机 Lindenmayer 系统生成的。我们在这个合成数据集上训练 DDSA 模型,并将其与在包含来自不同型号 C 臂的近 4000 个透视 X 射线图像的临床 DSA 数据集上的训练进行比较。

结果

我们在不同解剖结构的临床透视数据上评估了 DDSA 模型,包括腿部、腹部和心脏。腿部数据的结果表明,对于不同的方法,在合成数据上的训练表现相似,有时甚至优于在临床数据上的训练。腹部和心脏数据的结果表明,在合成数据上训练的模型能够比传统的 DSA 和在临床数据上训练的模型更清晰地提取 DSA 样图像。在合成数据上训练的模型始终优于其临床数据的对应模型,在 DDSA 图像的峰值信噪比(PSNR)和结构相似性指数度量(SSIM)指标的定量评估以及 DDSA 图像的分割的准确性、精度和 Dice 评分方面,都获得了更高的分数。

结论

我们提出了一种使用合成 DSA 图像对训练 DDSA 网络并直接从增强对比度的 X 射线图像中提取 DSA 样图像的方法。这是一种辅助诊断的潜在工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验