Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
J Vasc Interv Radiol. 2022 Jul;33(7):845-851.e8. doi: 10.1016/j.jvir.2022.03.010. Epub 2022 Mar 17.
To develop a deep learning (DL) model to generate synthetic, 2-dimensional subtraction angiograms free of artifacts from native abdominal angiograms.
In this retrospective study, 2-dimensional digital subtraction angiography (2D-DSA) images and native angiograms were consecutively collected from July 2019 to March 2020. Images were divided into motion-free (training, validation, and motion-free test datasets) and motion-artifact (motion-artifact test dataset) sets. A total of 3,185, 393, 383, and 345 images from 87 patients (mean age, 71 years ± 10; 64 men and 23 women) were included in the training, validation, motion-free, and motion-artifact test datasets, respectively. Native angiograms and 2D-DSA image pairs were used to train and validate an image-to-image translation model to generate synthetic DL-based subtraction angiography (DLSA) images. DLSA images were quantitatively evaluated by the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) using the motion-free dataset and were qualitatively evaluated via visual assessments by radiologists with a numerical rating scale using the motion-artifact dataset.
The DLSA images showed a mean PSNR (± standard deviation) of 43.05 dB ± 3.65 and mean SSIM of 0.98 ± 0.01, indicating high agreement with the original 2D-DSA images in the motion-free dataset. Qualitative visual evaluation by radiologists of the motion-artifact dataset showed that DLSA images contained fewer motion artifacts than 2D-DSA images. Additionally, DLSA images scored similar to or higher than 2D-DSA images for vascular visualization and clinical usefulness.
The developed DL model generated synthetic, motion-free subtraction images from abdominal angiograms with similar imaging characteristics to 2D-DSA images.
开发一种深度学习(DL)模型,从原始腹部血管造影图像生成无伪影的合成 2 维减影血管造影图像。
在这项回顾性研究中,从 2019 年 7 月至 2020 年 3 月连续收集了 2 维数字减影血管造影(2D-DSA)图像和原始血管造影图像。图像分为无运动(训练、验证和无运动测试数据集)和运动伪影(运动伪影测试数据集)两组。共纳入 87 例患者(平均年龄 71 岁±10 岁;64 名男性和 23 名女性)的 3185、393、383 和 345 张图像分别用于训练、验证、无运动和运动伪影测试数据集。使用原始血管造影和 2D-DSA 图像对来训练和验证图像到图像的翻译模型,以生成基于深度学习的合成减影血管造影(DLSA)图像。使用无运动数据集通过峰值信噪比(PSNR)和结构相似性(SSIM)对 DLSA 图像进行定量评估,并使用运动伪影数据集通过放射科医生的视觉评估和数字评分量表进行定性评估。
DLSA 图像的平均 PSNR(±标准差)为 43.05dB±3.65,平均 SSIM 为 0.98±0.01,表明在无运动数据集与原始 2D-DSA 图像具有高度一致性。放射科医生对运动伪影数据集的定性视觉评估显示,DLSA 图像比 2D-DSA 图像运动伪影更少。此外,DLSA 图像在血管可视化和临床实用性方面的评分与 2D-DSA 图像相似或更高。
开发的 DL 模型从腹部血管造影图像生成了具有与 2D-DSA 图像相似成像特征的无运动伪影的合成减影图像。