Suppr超能文献

对比增强CT与对比增强超声在诊断肝细胞胆管癌中的对比:一项倾向评分匹配研究。

Comparison contrast-enhanced CT with contrast-enhanced US in diagnosing combined hepatocellular-cholangiocarcinoma: a propensity score-matched study.

作者信息

Yang Jie, Zhang Yun, Bao Wu-Yong-Ga, Chen Yi-di, Jiang Hanyu, Huang Jia-Yan, Zeng Ke-Yu, Song Bin, Huang Zi-Xing, Lu Qiang

机构信息

Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.

Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.

出版信息

Insights Imaging. 2024 Feb 14;15(1):44. doi: 10.1186/s13244-023-01576-6.

Abstract

OBJECTIVES

To develop and compare noninvasive models for differentiating between combined hepatocellular-cholangiocarcinoma (cHCC-CCA) and HCC based on serum tumor markers, contrast-enhanced ultrasound (CEUS), and computed tomography (CECT).

METHODS

From January 2010 to December 2021, patients with pathologically confirmed cHCC-CCA or HCC who underwent both preoperative CEUS and CECT were retrospectively enrolled. Propensity scores were calculated to match cHCC-CCA and HCC patients with a near-neighbor ratio of 1:2. Two predicted models, a CEUS-predominant (CEUS features plus tumor markers) and a CECT-predominant model (CECT features plus tumor markers), were constructed using logistic regression analyses. Model performance was evaluated by the area under the curve (AUC), sensitivity, specificity, and accuracy.

RESULTS

A total of 135 patients (mean age, 51.3 years ± 10.9; 122 men) with 135 tumors (45 cHCC-CCA and 90 HCC) were included. By logistic regression analysis, unclear boundary in the intratumoral nonenhanced area, partial washout on CEUS, CA 19-9 > 100 U/mL, lack of cirrhosis, incomplete tumor capsule, and nonrim arterial phase hyperenhancement (APHE) volume < 50% on CECT were independent factors for a diagnosis of cHCC-CCA. The CECT-predominant model showed almost perfect sensitivity for cHCC-CCA, unlike the CEUS-predominant model (93.3% vs. 55.6%, p < 0.001). The CEUS-predominant model showed higher diagnostic specificity than the CECT-predominant model (80.0% vs. 63.3%; p = 0.020), especially in the ≤ 5 cm subgroup (92.0% vs. 70.0%; p = 0.013).

CONCLUSIONS

The CECT-predominant model provides higher diagnostic sensitivity than the CEUS-predominant model for CHCC-CCA. Combining CECT features with serum CA 19-9 > 100 U/mL shows excellent sensitivity.

CRITICAL RELEVANCE STATEMENT

Combining lack of cirrhosis, incomplete tumor capsule, and nonrim arterial phase hyperenhancement (APHE) volume < 50% on CECT with serum CA 19-9 > 100 U/mL shows excellent sensitivity in differentiating cHCC-CCA from HCC.

KEY POINTS

  1. Accurate differentiation between cHCC-CCA and HCC is essential for treatment decisions. 2. The CECT-predominant model provides higher accuracy than the CEUS-predominant model for CHCC-CCA. 3. Combining CECT features and CA 19-9 levels shows a sensitivity of 93.3% in diagnosing cHCC-CCA.
摘要

目的

基于血清肿瘤标志物、超声造影(CEUS)和计算机断层扫描(CECT),开发并比较用于鉴别肝细胞-胆管细胞癌(cHCC-CCA)和肝癌(HCC)的无创模型。

方法

回顾性纳入2010年1月至2021年12月期间接受术前CEUS和CECT检查且病理确诊为cHCC-CCA或HCC的患者。计算倾向评分,以1:2的近邻比例匹配cHCC-CCA和HCC患者。使用逻辑回归分析构建两个预测模型,即CEUS为主的模型(CEUS特征加肿瘤标志物)和CECT为主的模型(CECT特征加肿瘤标志物)。通过曲线下面积(AUC)、敏感性、特异性和准确性评估模型性能。

结果

共纳入135例患者(平均年龄51.3岁±10.9;122例男性),有135个肿瘤(45个cHCC-CCA和90个HCC)。通过逻辑回归分析,瘤内无强化区域边界不清、CEUS上部分消退、CA 19-9>100 U/mL、无肝硬化、肿瘤包膜不完整以及CECT上非边缘动脉期高增强(APHE)体积<50%是诊断cHCC-CCA的独立因素。与CEUS为主的模型不同,CECT为主的模型对cHCC-CCA显示出几乎完美的敏感性(93.3%对55.6%,p<0.001)。CEUS为主的模型比CECT为主的模型具有更高的诊断特异性(80.0%对63.3%;p=0.020),尤其是在≤5 cm亚组中(92.0%对70.0%;p=0.013)。

结论

对于CHCC-CCA,CECT为主的模型比CEUS为主的模型具有更高的诊断敏感性。将CECT特征与血清CA 19-9>100 U/mL相结合显示出优异的敏感性。

关键相关性声明

将CECT上无肝硬化、肿瘤包膜不完整和非边缘动脉期高增强(APHE)体积<50%与血清CA 19-9>100 U/mL相结合,在鉴别cHCC-CCA和HCC方面显示出优异的敏感性。

要点

  1. 准确鉴别cHCC-CCA和HCC对于治疗决策至关重要。2. 对于CHCC-CCA,CECT为主的模型比CEUS为主的模型具有更高的准确性。3. 结合CECT特征和CA 19-9水平在诊断cHCC-CCA时显示出93.3%的敏感性。
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5990/10866845/1795a620d79c/13244_2023_1576_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验