IEEE Trans Med Imaging. 2024 Jul;43(7):2420-2433. doi: 10.1109/TMI.2024.3364504. Epub 2024 Jul 1.
In cardiac CINE, motion-compensated MR reconstruction (MCMR) is an effective approach to address highly undersampled acquisitions by incorporating motion information between frames. In this work, we propose a novel perspective for addressing the MCMR problem and a more integrated and efficient solution to the MCMR field. Contrary to state-of-the-art (SOTA) MCMR methods which break the original problem into two sub-optimization problems, i.e. motion estimation and reconstruction, we formulate this problem as a single entity with one single optimization. Our approach is unique in that the motion estimation is directly driven by the ultimate goal, reconstruction, but not by the canonical motion-warping loss (similarity measurement between motion-warped images and target images). We align the objectives of motion estimation and reconstruction, eliminating the drawbacks of artifacts-affected motion estimation and therefore error-propagated reconstruction. Further, we can deliver high-quality reconstruction and realistic motion without applying any regularization/smoothness loss terms, circumventing the non-trivial weighting factor tuning. We evaluate our method on two datasets: 1) an in-house acquired 2D CINE dataset for the retrospective study and 2) the public OCMR cardiac dataset for the prospective study. The conducted experiments indicate that the proposed MCMR framework can deliver artifact-free motion estimation and high-quality MR images even for imaging accelerations up to 20x, outperforming SOTA non-MCMR and MCMR methods in both qualitative and quantitative evaluation across all experiments. The code is available at https://github.com/JZPeterPan/MCMR-Recon-Driven-Motion.
在心脏电影磁共振成像(cine-MRI)中,运动补偿磁共振重建(MCMR)是解决高度欠采样采集的有效方法,通过在帧之间引入运动信息。在这项工作中,我们提出了一种解决 MCMR 问题的新视角,以及一种更集成和有效的 MCMR 领域解决方案。与将原始问题分解为两个子优化问题,即运动估计和重建的最先进(SOTA)MCMR 方法不同,我们将这个问题表述为一个具有单个优化的单一实体。我们的方法的独特之处在于,运动估计是由最终目标,即重建,而不是由规范的运动变形损失(运动变形图像和目标图像之间的相似性测量)直接驱动的。我们对齐了运动估计和重建的目标,消除了受伪影影响的运动估计的缺点,从而避免了错误传播的重建。此外,我们可以在不应用任何正则化/平滑损失项的情况下提供高质量的重建和真实的运动,避免了非平凡的加权因子调整。我们在两个数据集上评估了我们的方法:1)一个内部采集的 2D cine-MRI 数据集用于回顾性研究,2)一个公开的 OCMR 心脏数据集用于前瞻性研究。进行的实验表明,即使在成像加速高达 20 倍的情况下,所提出的 MCMR 框架也可以提供无伪影的运动估计和高质量的 MR 图像,在所有实验的定性和定量评估中,都优于 SOTA 非 MCMR 和 MCMR 方法。代码可在 https://github.com/JZPeterPan/MCMR-Recon-Driven-Motion 上获得。