Suppr超能文献

利用时空贝叶斯建模检验社会脆弱性指数与 COVID-19 发病率和死亡率之间的关联。

Examining associations between social vulnerability indices and COVID-19 incidence and mortality with spatial-temporal Bayesian modeling.

机构信息

Indiana University - Purdue University at Indianapolis, United States.

Centers for Disease Control and Prevention, Agency for Toxic Substances and Disease Registry/ National Center for Environmental Health, Office of Innovation and Analytics, Geospatial Research, Analysis, and Services Program, United States.

出版信息

Spat Spatiotemporal Epidemiol. 2024 Feb;48:100623. doi: 10.1016/j.sste.2023.100623. Epub 2023 Nov 18.

Abstract

This study compares two social vulnerability indices, the U.S. CDC SVI and SoVI (the Social Vulnerability Index developed at the Hazards Vulnerability & Resilience Institute at the University of South Carolina), on their ability to predict the risk of COVID-19 cases and deaths. We utilize COVID-19 cases and deaths data for the state of Indiana from the Regenstrief Institute in Indianapolis, Indiana, from March 1, 2020, to March 31, 2021. We then aggregate the COVID-19 data to the census tract level, obtain the input variables, domains (components), and composite measures of both CDC SVI and SoVI data to create a Bayesian spatial-temporal ecological regression model. We compare the resulting spatial-temporal patterns and relative risk (RR) of SARS-CoV-2 infection (COVID-19 cases) and associated death. Results show there are discernable spatial-temporal patterns for SARS-CoV-2 infections and deaths with the largest contiguous hotspot for SARS-CoV-2 infections found in the southwest of the Indianapolis metropolitan area. We also observed one large contiguous hotspot for deaths that stretches across Indiana from the Cincinnati area in the southeast to just east and north of Terre Haute (southeast to west central). The spatial-temporal Bayesian model shows that a 1-percentile increase in CDC SVI was significantly (p ≤ 0.05) associated with an increased risk of SARS-CoV-2 infection by 6 % (RR = 1.06, 95 %CI = 1.04 -1.08). Whereas a 1-percentile increase in SoVI was significantly predicted to increase the risk of COVID-19 death by 45 % (RR = 1.45, 95 %CI =1.38 - 1.53). Domain-specific variables related to socioeconomic status, age, and race/ethnicity were shown to increase the risk of SARS-CoV-2 infections and deaths. There were notable differences in the relative risk estimates for SARS-CoV-2 infections and deaths when each of the two indices were incorporated in the model. Observed differences between the two social vulnerability indices and infection and death are likely due to alternative methodologies of formation and differences in input variables. The findings add to the growing literature on the relationship between social vulnerability and COVID-19 and further the development of COVID-19-specific vulnerability indices by illustrating the utility of local spatial-temporal analysis.

摘要

本研究比较了两种社会脆弱性指数,即美国疾病预防控制中心的 SVI 和 SoVI(南卡罗来纳大学危害脆弱性与复原力研究所开发的社会脆弱性指数),以评估它们预测 COVID-19 病例和死亡风险的能力。我们利用印第安纳州印第安纳波利斯的雷根斯特里夫研究所提供的 2020 年 3 月 1 日至 2021 年 3 月 31 日期间的 COVID-19 病例和死亡数据。然后,我们将 COVID-19 数据汇总到普查区层面,获取输入变量、领域(组成部分)以及 CDC SVI 和 SoVI 数据的综合指标,以创建贝叶斯时空生态回归模型。我们比较了 SARS-CoV-2 感染(COVID-19 病例)和相关死亡的时空模式和相对风险(RR)。结果表明,SARS-CoV-2 感染存在明显的时空模式,印第安纳波利斯大都市区西南部发现最大的连续热点。我们还观察到一个较大的连续死亡热点,从东南部的辛辛那提到东北部的特雷霍特(东南到中西部)横跨印第安纳州。时空贝叶斯模型显示,CDC SVI 增加 1%,SARS-CoV-2 感染的风险显著增加 6%(RR=1.06,95%CI=1.04-1.08)。而 SoVI 增加 1%,COVID-19 死亡的风险显著增加 45%(RR=1.45,95%CI=1.38-1.53)。与社会经济地位、年龄和种族/民族相关的特定领域变量显示会增加 SARS-CoV-2 感染和死亡的风险。当两个指数中的每一个都被纳入模型时,SARS-CoV-2 感染和死亡的相对风险估计值存在显著差异。两种社会脆弱性指数与感染和死亡之间的差异可能是由于形成方法的不同和输入变量的差异所致。研究结果增加了关于社会脆弱性与 COVID-19 之间关系的文献,并通过说明本地时空分析的实用性,进一步发展了 COVID-19 特定的脆弱性指数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验