Suppr超能文献

从机器学习中获取线索,对印度各省的 SARS-CoV-2 奥密克戎感染进行分区和时间序列建模。

Taking cues from machine learning, compartmental and time series models for SARS-CoV-2 omicron infection in Indian provinces.

机构信息

Department of Statistics, School of Physical and Decision Science, Babasaheb Bhimrao Ambedkar University, Lucknow-226025, India.

Department of Library & Information Science, School of Information Science & Technology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India.

出版信息

Spat Spatiotemporal Epidemiol. 2024 Feb;48:100634. doi: 10.1016/j.sste.2024.100634. Epub 2024 Jan 18.

Abstract

SARS-CoV-2, the virus responsible for COVID-19, posed a significant threat to the world. We analyzed COVID-19 dissemination data in the top ten Indian provinces by infection incidences using the Susceptible-Infectious-Removed (SIR) model, an Autoregressive Integrated Moving Average (ARIMA) time series model, a machine learning model based on the Random Forest, and distribution fitting. Outbreaks are expected to continue if the Basic Reproduction Number (R) > 1, and infection waves are anticipated to end if the R < 1, as determined by the SIR model. Different parametric probability distributions are also fitted. Data collected from December 12, 2021, to March 31, 2022, encompassing data from both before and during the implementation of strict control measures. Based on the estimates of the model parameters, health agencies and government policymakers can develop strategies to combat the spread of the disease in the future, and the most effective technique can be recommended for real-world application for other outbreaks of COVID-19. The best method out of these could be also implemented further on the epidemiological data of other similar infectious agents.

摘要

SARS-CoV-2 病毒是导致 COVID-19 的罪魁祸首,对全球构成了重大威胁。我们使用 Susceptible-Infectious-Removed(SIR)模型、自回归综合移动平均(ARIMA)时间序列模型、基于随机森林的机器学习模型和分布拟合分析了印度感染人数最多的前十个省份的 COVID-19 传播数据。如果基本繁殖数(R)>1,则预计疫情将持续,如果 R<1,则预计感染波将结束,这是 SIR 模型确定的。还拟合了不同的参数概率分布。数据收集自 2021 年 12 月 12 日至 2022 年 3 月 31 日,包括实施严格控制措施前后的数据。根据模型参数的估计,卫生机构和政府政策制定者可以制定未来对抗疾病传播的策略,并可以为 COVID-19 等其他疫情的实际应用推荐最有效的技术。这些方法中的最佳方法也可以进一步应用于其他类似传染病的流行病学数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验