School of Water Resources Engineering, Jadavpur University, Kolkata, India.
Civil Engineering Department, Global Institute of Science & Technology, Purba Medinipur 721657, Haldia, West Bengal, India.
Environ Sci Pollut Res Int. 2024 Mar;31(13):19439-19457. doi: 10.1007/s11356-024-32415-w. Epub 2024 Feb 15.
The water quality index (WQI) is a globally accepted guideline to indicate the water quality standard of any groundwater resource. Water levels in existing groundwater sources are declining in several coastal zones. Therefore, for monitoring water quality and improving water management, the prediction and identification of groundwater status by an effective technique with higher accuracy is urgently needed. Therefore, this research aims to find an effective model for WQI prediction by comparing entropy and critic weight-based WQI (ENW-WQI and CRITIC-WQI) with multi-layer perceptron artificial neural network (MLP-ANN) technique and also to identify contaminated zones using GIS. Initially, 1000 water sampling datasets with concentrations of several water quality parameters of different coastal blocks of eastern India during 2018 to 2022 are considered for the estimation of ENW-WQI and CRITIC-WQI. It shows 65% and 67% of the samples are excellent to good for drinking. ENW-WQI and CRITIC-WQI-based MLP-ANN models have been established considering different data portioning and hidden neuron numbers. Input variables and appropriate dataset partitioning with hidden neurons for models obtained from correlation and trial-error analysis. Spatial distribution maps are also produced for calculated WQIs using inverse distance weighted interpolation approaches. Three fitting models are obtained: ENW-WQI-MLP-ANN, CRITIC-WQI-MLP-ANN-I and CRITIC-WQI-MLP-ANN-II. CRITIC-WQI-MLP-ANN-II model (data ratio 85:15, network structure 6-12-1, R = 0.986, NSE = 0.98, and error rate 0.49%) provides the best accuracy in WQI prediction. The GIS-based WQI maps record several areas related to drinking water quality. The results of this research can help in planning the provision of safe drinking water in the future.
水质指数(WQI)是一个被全球广泛接受的指标,用于指示任何地下水资源的水质标准。在一些沿海地区,现有的地下水位正在下降。因此,为了监测水质和改善水资源管理,迫切需要采用一种更精确的有效技术来预测和识别地下水状况。因此,本研究旨在通过比较基于熵和批评权重的水质指数(ENW-WQI 和 CRITIC-WQI)与多层感知器人工神经网络(MLP-ANN)技术,找到一种有效的 WQI 预测模型,并利用 GIS 识别污染区域。
最初,考虑了来自印度东部沿海地区不同沿海区块的 1000 个水采样数据集,这些数据集包含了 2018 年至 2022 年期间的多个水质参数浓度,用于估计 ENW-WQI 和 CRITIC-WQI。结果显示,65%和 67%的样本适合饮用。
考虑到不同的数据分割和隐藏神经元数量,建立了基于 ENW-WQI 和 CRITIC-WQI 的 MLP-ANN 模型。通过相关分析和试错分析,获得了模型的输入变量和适当的数据分割以及隐藏神经元数。使用反距离加权插值方法为计算出的 WQI 生成了空间分布地图。获得了三个拟合模型:ENW-WQI-MLP-ANN、CRITIC-WQI-MLP-ANN-I 和 CRITIC-WQI-MLP-ANN-II。CRITIC-WQI-MLP-ANN-II 模型(数据比例 85:15,网络结构 6-12-1,R=0.986,NSE=0.98,误差率 0.49%)在 WQI 预测方面提供了最佳的准确性。基于 GIS 的 WQI 地图记录了与饮用水质量相关的几个区域。本研究的结果有助于规划未来安全饮用水的供应。