Suppr超能文献

通过氢化或氟化实现二维和一维石墨烯磁化的幻想:批判性地审视旧方案并通过方法提出新方案。

The chimera of 2D- and 1D-graphene magnetization by hydrogenation or fluorination: critically revisiting old schemes and proposing new ones by methods.

作者信息

Albino Andrea, Buonocore Francesco, Celino Massimo, Totti Federico

机构信息

Dipartimento di Chimica "Ugo Schiff" & INSTM RU, Università degli Studi di Firenze Via della Lastruccia 3 Sesto Fiorentino (FI) 50019 Italy

Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA), Casaccia Research Centre Roma 00123 Italy.

出版信息

Nanoscale Adv. 2024 Jan 22;6(4):1106-1121. doi: 10.1039/d3na01008b. eCollection 2024 Feb 13.

Abstract

Graphene is an ideal candidate material for spintronics due to its layered structure and peculiar electronic structure. However, in its pristine state, the production of magnetic moments is not trivial. A very appealing approach is the chemical modification of pristine graphene. The main obstacle is the control of the geometrical features and the selectivity of functional groups. The lack of a periodic functionalization pattern of the graphene sheet prevents, therefore, the achievement of long-range magnetic order, thus limiting its use in spintronic devices. In such regards, the stability and the magnitude of the instilled magnetic moment depending on the size and shape of designed graphane islands and ribbons embedded in graphene matrix will be computed and analysed. Our findings thus suggest that a novel and magneto-active graphene derivative nanostructure could become achievable more easily than extended graphone or nanoribbons, with a strong potential for future spintronics applications with a variable spin-current density.

摘要

由于其层状结构和独特的电子结构,石墨烯是自旋电子学的理想候选材料。然而,在其原始状态下,磁矩的产生并非易事。一种非常有吸引力的方法是对原始石墨烯进行化学修饰。主要障碍是对几何特征的控制和官能团的选择性。因此,石墨烯片缺乏周期性的功能化模式阻碍了长程磁序的实现,从而限制了其在自旋电子器件中的应用。在这方面,将计算和分析取决于嵌入石墨烯基质中的设计的石墨烷岛和带的尺寸和形状的注入磁矩的稳定性和大小。因此,我们的研究结果表明,一种新型的具有磁活性的石墨烯衍生物纳米结构可能比扩展的石墨炔或纳米带更容易实现,具有在未来自旋电子学应用中具有可变自旋电流密度的强大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d87f/10863704/687346ee101d/d3na01008b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验