Suppr超能文献

估计曲线时变治疗效果:将结构嵌套均值模型的g估计与纵向因果推断的时变效应模型相结合。

Estimating curvilinear time-varying treatment effects: Combining g-estimation of structural nested mean models with time-varying effect models for longitudinal causal inference.

作者信息

Loh Wen Wei

机构信息

Department of Quantitative Theory and Methods, Emory University.

出版信息

Psychol Methods. 2024 Feb 15. doi: 10.1037/met0000637.

Abstract

Longitudinal designs can fortify causal inquiries of a focal predictor (i.e., treatment) on an outcome. But valid causal inferences are complicated by causal feedback between confounders and treatment over time. G-estimation of a structural nested mean model (SNMM) is designed to handle the complexities beset by measured time-varying or treatment-dependent confounding in longitudinal data. But valid inference requires correctly specifying the functional form of the SNMM, such as how the effects stay constant or change over time. In this article, we develop a g-estimation strategy for linear structural nested mean models whose causal parameters adopt the form of time-varying coefficient functions. These time-varying coefficient functions are smooth semiparametric functions of time that permit probing how the treatment effects may change curvilinearly. Further effect modification by time-invariant and time-varying covariates can be readily postulated in the SNMM to test fine-grained effect heterogeneity. We then describe a g-estimation strategy for estimating such an SNMM. We utilize the established time-varying effect model (TVEM) approach from the prevention and psychotherapy research literature for modeling flexible changes in covariate-outcome associations over time. Moreover, we exploit a known benefit of g-estimation over routine regression methods: its double robustness conferring protection against biases induced by certain forms of model misspecification. We encourage psychology researchers seeking correct causal conclusions from longitudinal data to use an SNMM with time-varying coefficient functions to assess curvilinear causal effects over time, and to use g-estimation with TVEM to resolve measured treatment-dependent confounding. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

纵向设计可以加强对一个核心预测因素(即治疗)对结果的因果探究。但是,随着时间的推移,混杂因素与治疗之间的因果反馈会使有效的因果推断变得复杂。结构嵌套均值模型(SNMM)的G估计旨在处理纵向数据中由测量的随时间变化或依赖于治疗的混杂因素所带来的复杂性。但是有效的推断需要正确指定SNMM的函数形式,例如效应如何随时间保持不变或变化。在本文中,我们为线性结构嵌套均值模型开发了一种G估计策略,其因果参数采用随时间变化的系数函数形式。这些随时间变化的系数函数是时间的平滑半参数函数,允许探究治疗效果如何呈曲线变化。在SNMM中,可以很容易地假设由时不变和随时间变化的协变量进行进一步的效应修正,以检验细粒度的效应异质性。然后,我们描述了一种用于估计这种SNMM的G估计策略。我们利用预防和心理治疗研究文献中已有的时变效应模型(TVEM)方法,对协变量与结果之间的关联随时间的灵活变化进行建模。此外,我们利用G估计相对于常规回归方法的一个已知优势:它的双重稳健性可防止由某些形式的模型错误指定所引起的偏差。我们鼓励从纵向数据中寻求正确因果结论的心理学研究人员使用具有随时间变化系数函数的SNMM来评估随时间的曲线因果效应,并使用TVEM的G估计来解决测量的依赖于治疗的混杂问题。(PsycInfo数据库记录(c)2024美国心理学会,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验