Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada.
Department of Statistics, Harvard University, Cambridge, Massachusetts.
Biometrics. 2023 Jun;79(2):775-787. doi: 10.1111/biom.13687. Epub 2022 Jun 30.
Analyses of biomedical studies often necessitate modeling longitudinal causal effects. The current focus on personalized medicine and effect heterogeneity makes this task even more challenging. Toward this end, structural nested mean models (SNMMs) are fundamental tools for studying heterogeneous treatment effects in longitudinal studies. However, when outcomes are binary, current methods for estimating multiplicative and additive SNMM parameters suffer from variation dependence between the causal parameters and the noncausal nuisance parameters. This leads to a series of difficulties in interpretation, estimation, and computation. These difficulties have hindered the uptake of SNMMs in biomedical practice, where binary outcomes are very common. We solve the variation dependence problem for the binary multiplicative SNMM via a reparameterization of the noncausal nuisance parameters. Our novel nuisance parameters are variation independent of the causal parameters, and hence allow for coherent modeling of heterogeneous effects from longitudinal studies with binary outcomes. Our parameterization also provides a key building block for flexible doubly robust estimation of the causal parameters. Along the way, we prove that an additive SNMM with binary outcomes does not admit a variation independent parameterization, thereby justifying the restriction to multiplicative SNMMs.
生物医学研究的分析常常需要对纵向因果效应进行建模。当前对个性化医学和效应异质性的关注使得这项任务更加具有挑战性。为此,结构嵌套均值模型(SNMM)是研究纵向研究中异质治疗效果的基本工具。然而,当结果为二分类时,当前用于估计乘法和加法 SNMM 参数的方法存在因果参数和非因果干扰参数之间的变异依赖性问题。这导致在解释、估计和计算方面都存在一系列困难。这些困难阻碍了 SNMM 在生物医学实践中的应用,因为二分类结果非常常见。我们通过对非因果干扰参数进行重新参数化来解决二分类乘法 SNMM 的变异依赖性问题。我们的新干扰参数与因果参数是变异独立的,因此可以从具有二分类结果的纵向研究中一致地建模异质效应。我们的参数化也为因果参数的灵活双重稳健估计提供了一个关键构建块。在这个过程中,我们证明了具有二分类结果的加法 SNMM 不存在变异独立的参数化,从而证明了对乘法 SNMM 的限制是合理的。