Suppr超能文献

人类辅助和自助式电子健康干预措施的使用意图和用户期望:基于互联网的随机对照试验。

Use Intention and User Expectations of Human-Supported and Self-Help eHealth Interventions: Internet-Based Randomized Controlled Trial.

作者信息

Cohen Rodrigues Talia R, Reijnders Thomas, Breeman Linda D, Janssen Veronica R, Kraaijenhagen Roderik A, Atsma Douwe E, Evers Andrea Wm

机构信息

Health, Medical, and Neuropsychology Unit, Leiden University, Leiden, Netherlands.

Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands.

出版信息

JMIR Form Res. 2024 Feb 15;8:e38803. doi: 10.2196/38803.

Abstract

BACKGROUND

Self-help eHealth interventions provide automated support to change health behaviors without any further human assistance. The main advantage of self-help eHealth interventions is that they have the potential to lower the workload of health care professionals. However, one disadvantage is that they generally have a lower uptake. Possibly, the absence of a relationship with a health care professional (referred to as the working alliance) could lead to negative expectations that hinder the uptake of self-help interventions. The Unified Theory of Acceptance and Use of Technology (UTAUT) identifies which expectations predict use intention. As there has been no previous research exploring how expectations affect the adoption of both self-help and human-supported eHealth interventions, this study is the first to investigate the impact of expectations on the uptake of both kinds of eHealth interventions.

OBJECTIVE

This study investigated the intention to use a self-help eHealth intervention compared to a human-supported eHealth intervention and the expectations that moderate this relationship.

METHODS

A total of 146 participants were randomly assigned to 1 of 2 conditions (human-supported or self-help eHealth interventions). Participants evaluated screenshots of a human-supported or self-help app-based stress intervention. We measured intention to use the intervention-expected working alliance and the UTAUT constructs: performance expectancy, effort expectancy, and social influence.

RESULTS

Use intention did not differ significantly between the 2 conditions (t=-1.133; P=.26). Performance expectancy (F=69.269; P<.001), effort expectancy (F=3.961; P=.049), social influence (F=90.025; P<.001), and expected working alliance (F=26.435; P<.001) were positively related to use intention regardless of condition. The interaction analysis showed that performance expectancy (F=4.363; P=.04) and effort expectancy (F=4.102; P=.045) more strongly influenced use intention in the self-help condition compared to the human-supported condition.

CONCLUSIONS

As we found no difference in use intention, our results suggest that we could expect an equal uptake of self-help eHealth interventions and human-supported ones. However, attention should be paid to people who have doubts about the intervention's helpfulness or ease of use. For those people, providing additional human support would be beneficial to ensure uptake. Screening user expectations could help health care professionals optimize self-help eHealth intervention uptake in practice.

TRIAL REGISTRATION

OSF Registries osf.io/n47cz; https://osf.io/n47cz.

摘要

背景

自助式电子健康干预措施可在无需任何进一步人力协助的情况下提供自动化支持以改变健康行为。自助式电子健康干预措施的主要优点在于它们有可能减轻医护人员的工作量。然而,一个缺点是它们的接受度通常较低。可能与医护人员缺乏关系(称为工作联盟)会导致负面预期,从而阻碍自助干预措施的接受。技术接受与使用统一理论(UTAUT)确定了哪些预期能够预测使用意愿。由于此前尚无研究探讨预期如何影响自助式和有人力支持的电子健康干预措施的采用情况,本研究首次调查了预期对这两种电子健康干预措施接受情况的影响。

目的

本研究调查了与有人力支持的电子健康干预措施相比,使用自助式电子健康干预措施的意愿以及调节这种关系的预期。

方法

总共146名参与者被随机分配到两种情况之一(有人力支持或自助式电子健康干预措施)。参与者评估了基于应用程序的有人力支持或自助式压力干预措施的截图。我们测量了使用干预措施的意愿、预期工作联盟以及UTAUT的各项构念:绩效预期、努力预期和社会影响。

结果

两种情况之间的使用意愿没有显著差异(t = -1.133;P = 0.26)。无论在哪种情况下,绩效预期(F = 69.269;P < 0.001)、努力预期(F = 3.961;P = 0.049)、社会影响(F = 90.025;P < 0.001)和预期工作联盟(F = 26.435;P < 0.001)都与使用意愿呈正相关。交互分析表明,与有人力支持的情况相比,绩效预期(F = 4.363;P = 0.04)和努力预期(F = 4.102;P = 0.045)在自助式情况下对使用意愿的影响更强。

结论

由于我们发现使用意愿没有差异,我们的结果表明,我们可以预期自助式电子健康干预措施和有人力支持的干预措施的接受度相当。然而,对于那些对干预措施的有效性或易用性有疑虑的人应予以关注。对于这些人,提供额外的人力支持将有助于确保接受度。筛选用户预期可以帮助医护人员在实践中优化自助式电子健康干预措施的接受情况。

试验注册

OSF注册库osf.io/n47cz;https://osf.io/n47cz。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdc9/10905349/813d9a69eb1d/formative_v8i1e38803_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验