Suppr超能文献

通过由双阴离子堆积定义的多重配位环境实现的超离子锂传输。

Superionic lithium transport via multiple coordination environments defined by two-anion packing.

作者信息

Han Guopeng, Vasylenko Andrij, Daniels Luke M, Collins Chris M, Corti Lucia, Chen Ruiyong, Niu Hongjun, Manning Troy D, Antypov Dmytro, Dyer Matthew S, Lim Jungwoo, Zanella Marco, Sonni Manel, Bahri Mounib, Jo Hongil, Dang Yun, Robertson Craig M, Blanc Frédéric, Hardwick Laurence J, Browning Nigel D, Claridge John B, Rosseinsky Matthew J

机构信息

Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK.

Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory, 51 Oxford Street, University of Liverpool, Liverpool L7 3NY, UK.

出版信息

Science. 2024 Feb 16;383(6684):739-745. doi: 10.1126/science.adh5115. Epub 2024 Feb 15.

Abstract

Fast cation transport in solids underpins energy storage. Materials design has focused on structures that can define transport pathways with minimal cation coordination change, restricting attention to a small part of chemical space. Motivated by the greater structural diversity of binary intermetallics than that of the metallic elements, we used two anions to build a pathway for three-dimensional superionic lithium ion conductivity that exploits multiple cation coordination environments. LiSiSI is a pure lithium ion conductor created by an ordering of sulphide and iodide that combines elements of hexagonal and cubic close-packing analogously to the structure of NiZr. The resulting diverse network of lithium positions with distinct geometries and anion coordination chemistries affords low barriers to transport, opening a large structural space for high cation conductivity.

摘要

固体中的快速阳离子传输是能量存储的基础。材料设计一直聚焦于那些能够在阳离子配位变化最小的情况下定义传输路径的结构,从而将注意力限制在化学空间的一小部分。受二元金属间化合物比金属元素具有更大结构多样性的启发,我们使用两种阴离子构建了一条用于三维超离子锂离子传导的路径,该路径利用了多种阳离子配位环境。LiSiSI是一种纯锂离子导体,由硫化物和碘化物有序排列形成,其结合了六方和立方密堆积的元素,类似于NiZr的结构。由此产生的具有不同几何形状和阴离子配位化学的多样化锂位置网络为传输提供了低势垒,为高阳离子传导性开辟了一个广阔的结构空间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验