Wang Qian, Yang Fangling, Wang Yuhang, Zhang Di, Sato Ryuhei, Zhang Linda, Cheng Eric Jianfeng, Yan Yigang, Chen Yungui, Kisu Kazuaki, Orimo Shin-Ichi, Li Hao
Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan.
Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610207, China.
Angew Chem Int Ed Engl. 2025 Jun 17;64(25):e202506573. doi: 10.1002/anie.202506573. Epub 2025 Apr 25.
Solid-state electrolytes (SSEs) are essential for next-generation energy storage technologies. However, the exploration of divalent hydrides is hindered by complex ionic migration mechanisms and reliance on "trial-and-error" methodologies. Conventional approaches, which focus on individual materials and predefined pathways, remain inefficient. Herein, we present a data-driven artificial intelligence framework that integrates a comprehensive SSE database with large language models and ab initio metadynamics (MetaD) simulations to accelerate the discovery of hydride SSEs. Our study reveals that hydrides incorporating neutral molecules have great potential, with MetaD revealing novel "two-step" ion migration mechanisms. Predictive models developed using both experimental and computational data accurately forecast ionic migration activation energies for various types of hydride SSEs. In particular, some SSEs with carbon-containing neutral molecules exhibit notably low activation energy, with barriers as low as 0.62 eV. This framework enables the rapid identification of optimized SSE candidates and establishes a transformative tool for advancing sustainable energy storage technologies.
固态电解质(SSEs)对于下一代储能技术至关重要。然而,二价氢化物的探索受到复杂的离子迁移机制以及对“试错”方法的依赖的阻碍。专注于单一材料和预定义途径的传统方法仍然效率低下。在此,我们提出了一个数据驱动的人工智能框架,该框架将一个全面的固态电解质数据库与大语言模型和从头算元动力学(MetaD)模拟相结合,以加速氢化物固态电解质的发现。我们的研究表明,包含中性分子的氢化物具有巨大潜力,元动力学揭示了新颖的“两步”离子迁移机制。使用实验和计算数据开发的预测模型能够准确预测各种类型氢化物固态电解质的离子迁移活化能。特别是,一些含有碳中性分子的固态电解质表现出极低的活化能,势垒低至0.62电子伏特。该框架能够快速识别优化的固态电解质候选物,并为推进可持续储能技术建立了一个变革性工具。