Steves Megan A, He Changdong, Xu Ke
Department of Chemistry, University of California, Berkeley, California, USA; email:
Annu Rev Phys Chem. 2024 Jun;75(1):163-183. doi: 10.1146/annurev-physchem-070623-034225. Epub 2024 Jun 14.
By superlocalizing the positions of millions of single molecules over many camera frames, a class of super-resolution fluorescence microscopy methods known as single-molecule localization microscopy (SMLM) has revolutionized how we understand subcellular structures over the past decade. In this review, we highlight emerging studies that transcend the outstanding structural (shape) information offered by SMLM to extract and map physicochemical parameters in living mammalian cells at single-molecule and super-resolution levels. By encoding/decoding high-dimensional information-such as emission and excitation spectra, motion, polarization, fluorescence lifetime, and beyond-for every molecule, and mass accumulating these measurements for millions of molecules, such multidimensional and multifunctional super-resolution approaches open new windows into intracellular architectures and dynamics, as well as their underlying biophysical rules, far beyond the diffraction limit.
通过在多个相机帧上对数百万个单分子的位置进行超定位,一类被称为单分子定位显微镜(SMLM)的超分辨率荧光显微镜方法在过去十年中彻底改变了我们对亚细胞结构的理解方式。在这篇综述中,我们重点介绍了一些新兴研究,这些研究超越了SMLM所提供的出色结构(形状)信息,能够在单分子和超分辨率水平上提取和绘制活的哺乳动物细胞中的物理化学参数。通过对每个分子的发射和激发光谱、运动、偏振、荧光寿命等高维信息进行编码/解码,并对数百万个分子的这些测量值进行大量积累,这种多维和多功能的超分辨率方法为深入了解细胞内结构和动力学及其潜在的生物物理规则打开了新窗口,远远超出了衍射极限。