Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA; Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
Int J Biochem Cell Biol. 2018 Aug;101:113-117. doi: 10.1016/j.biocel.2018.06.002. Epub 2018 Jun 3.
The recent surge in spectroscopic Single-Molecule Localization Microscopy (sSMLM) offers exciting new capabilities for combining single molecule imaging and spectroscopic analysis. Through the synergistic integration of super-resolution optical microscopy and single-molecule spectroscopy, sSMLM offers combined strengths from both fields. By capturing the full spectra of single molecule fluorescent emissions, sSMLM can distinguish minute spectroscopic variations from individual fluorescent molecules while preserving nanoscopic spatial localization precision. It can significantly extend the coding space for multi-molecule super-resolution imaging. Furthermore, it has the potential to detect spectroscopic variations in fluorescence emission associated with molecular interactions, which further enables probing local chemical and biochemical inhomogeneities of the nano-environments. In this review, we seek to explain the working principle of sSMLM technologies and the status of sSMLM techniques towards new super-resolution imaging applications.
近年来,光谱单分子定位显微镜(sSMLM)的发展突飞猛进,为将单分子成像与光谱分析相结合提供了令人兴奋的新功能。通过超分辨率光学显微镜和单分子光谱学的协同整合,sSMLM 结合了这两个领域的优势。通过捕获单个荧光分子的全光谱,sSMLM 可以在保持纳米级空间定位精度的同时,区分单个荧光分子的微小光谱变化。它可以极大地扩展多分子超分辨率成像的编码空间。此外,它还有潜力检测与分子相互作用相关的荧光发射的光谱变化,从而进一步能够探测纳米环境中的局部化学和生物化学不均匀性。在这篇综述中,我们试图解释 sSMLM 技术的工作原理以及 sSMLM 技术在新的超分辨率成像应用中的现状。