Suppr超能文献

StairNet:用于人机运动的楼梯视觉识别。

StairNet: visual recognition of stairs for human-robot locomotion.

机构信息

Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.

KITE Research Institute, Toronto Rehabilitation Institute, Toronto, Canada.

出版信息

Biomed Eng Online. 2024 Feb 15;23(1):20. doi: 10.1186/s12938-024-01216-0.

Abstract

Human-robot walking with prosthetic legs and exoskeletons, especially over complex terrains, such as stairs, remains a significant challenge. Egocentric vision has the unique potential to detect the walking environment prior to physical interactions, which can improve transitions to and from stairs. This motivated us to develop the StairNet initiative to support the development of new deep learning models for visual perception of real-world stair environments. In this study, we present a comprehensive overview of the StairNet initiative and key research to date. First, we summarize the development of our large-scale data set with over 515,000 manually labeled images. We then provide a summary and detailed comparison of the performances achieved with different algorithms (i.e., 2D and 3D CNN, hybrid CNN and LSTM, and ViT networks), training methods (i.e., supervised learning with and without temporal data, and semi-supervised learning with unlabeled images), and deployment methods (i.e., mobile and embedded computing), using the StairNet data set. Finally, we discuss the challenges and future directions. To date, our StairNet models have consistently achieved high classification accuracy (i.e., up to 98.8%) with different designs, offering trade-offs between model accuracy and size. When deployed on mobile devices with GPU and NPU accelerators, our deep learning models achieved inference speeds up to 2.8 ms. In comparison, when deployed on our custom-designed CPU-powered smart glasses, our models yielded slower inference speeds of 1.5 s, presenting a trade-off between human-centered design and performance. Overall, the results of numerous experiments presented herein provide consistent evidence that StairNet can be an effective platform to develop and study new deep learning models for visual perception of human-robot walking environments, with an emphasis on stair recognition. This research aims to support the development of next-generation vision-based control systems for robotic prosthetic legs, exoskeletons, and other mobility assistive technologies.

摘要

人类-机器人使用假肢和外骨骼行走,特别是在复杂地形上,如楼梯,仍然是一个重大挑战。自主体视觉具有在物理交互之前检测行走环境的独特潜力,这可以改善上下楼梯的过渡。这促使我们开发了 StairNet 计划,以支持为现实世界楼梯环境的视觉感知开发新的深度学习模型。在这项研究中,我们全面概述了 StairNet 计划和迄今为止的关键研究。首先,我们总结了我们的大型数据集的开发,该数据集包含超过 515,000 张手动标记的图像。然后,我们提供了不同算法(即 2D 和 3D CNN、混合 CNN 和 LSTM 以及 ViT 网络)、训练方法(即有和没有时间数据的监督学习以及使用未标记图像的半监督学习)以及部署方法(即移动和嵌入式计算)的性能总结和详细比较,使用 StairNet 数据集。最后,我们讨论了挑战和未来方向。迄今为止,我们的 StairNet 模型在不同设计下始终实现了较高的分类准确性(即高达 98.8%),在模型准确性和大小之间进行权衡。当部署在具有 GPU 和 NPU 加速器的移动设备上时,我们的深度学习模型实现了高达 2.8ms 的推理速度。相比之下,当部署在我们定制设计的基于 CPU 的智能眼镜上时,我们的模型产生了较慢的推理速度为 1.5s,在以人为中心的设计和性能之间进行了权衡。总的来说,本文提出的大量实验结果提供了一致的证据,表明 StairNet 可以成为开发和研究用于人类-机器人行走环境视觉感知的新深度学习模型的有效平台,重点是楼梯识别。这项研究旨在支持下一代基于视觉的控制系统的开发,用于机器人假肢、外骨骼和其他移动辅助技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ad/10870468/020750630a97/12938_2024_1216_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验