IGDP Ecology, The Pennsylvania State University, 422 Huck Life Sciences Building, University Park, PA, 16803, USA.
Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
BMC Biol. 2024 Feb 16;22(1):38. doi: 10.1186/s12915-024-01831-2.
Plants have complex and dynamic immune systems that have evolved to resist pathogens. Humans have worked to enhance these defenses in crops through breeding. However, many crops harbor only a fraction of the genetic diversity present in wild relatives. Increased utilization of diverse germplasm to search for desirable traits, such as disease resistance, is therefore a valuable step towards breeding crops that are adapted to both current and emerging threats. Here, we examine diversity of defense responses across four populations of the long-generation tree crop Theobroma cacao L., as well as four non-cacao Theobroma species, with the goal of identifying genetic elements essential for protection against the oomycete pathogen Phytophthora palmivora.
We began by creating a new, highly contiguous genome assembly for the P. palmivora-resistant genotype SCA 6 (Additional file 1: Tables S1-S5), deposited in GenBank under accessions CP139290-CP139299. We then used this high-quality assembly to combine RNA and whole-genome sequencing data to discover several genes and pathways associated with resistance. Many of these are unique, i.e., differentially regulated in only one of the four populations (diverged 40 k-900 k generations). Among the pathways shared across all populations is phenylpropanoid biosynthesis, a metabolic pathway with well-documented roles in plant defense. One gene in this pathway, caffeoyl shikimate esterase (CSE), was upregulated across all four populations following pathogen treatment, indicating its broad importance for cacao's defense response. Further experimental evidence suggests this gene hydrolyzes caffeoyl shikimate to create caffeic acid, an antimicrobial compound and known inhibitor of Phytophthora spp.
Our results indicate most expression variation associated with resistance is unique to populations. Moreover, our findings demonstrate the value of using a broad sample of evolutionarily diverged populations for revealing the genetic bases of cacao resistance to P. palmivora. This approach has promise for further revealing and harnessing valuable genetic resources in this and other long-generation plants.
植物具有复杂而动态的免疫系统,这些免疫系统是为了抵抗病原体而进化的。人类通过培育来增强作物的这些防御能力。然而,许多作物只拥有其野生亲缘种存在的遗传多样性的一小部分。因此,更多地利用多样化的种质资源来寻找理想的特性,如抗病性,是朝着培育适应当前和新出现威胁的作物迈出的有价值的一步。在这里,我们检查了四个可可属植物群体以及四个非可可属 Theobroma 物种的防御反应多样性,目的是确定对疫霉菌病原体可可疫霉具有保护作用的遗传要素。
我们首先为抗可可疫霉基因型 SCA 6 创建了一个新的、高度连续的基因组组装(附加文件 1:表 S1-S5),该组装已在 GenBank 中以 CP139290-CP139299 号 accession 进行了存储。然后,我们使用这个高质量的组装将 RNA 和全基因组测序数据结合起来,发现了几个与抗性相关的基因和途径。其中许多是独特的,即在四个群体中的一个群体中差异调控(分化了 40 k-900 k 代)。在所有群体中共享的途径之一是苯丙素生物合成途径,这是一个代谢途径,在植物防御中具有很好的记录。该途径中的一个基因,咖啡酰莽草酸酯酶(CSE),在所有四个群体中都在病原体处理后上调,表明其对可可防御反应具有广泛的重要性。进一步的实验证据表明,该基因将咖啡酰莽草酸酯水解为咖啡酸,咖啡酸是一种具有抗菌作用的化合物,也是已知的抑制物 Phytophthora spp.。
我们的结果表明,与抗性相关的大多数表达变化是群体特有的。此外,我们的研究结果表明,使用广泛的进化上分化的群体来揭示可可对可可疫霉的抗性的遗传基础是有价值的。这种方法有希望在揭示和利用这种和其他长世代植物中的有价值的遗传资源方面进一步取得成果。