Suppr超能文献

使用详细时间预测因子的复杂建模并不能改善基于健康记录的自杀风险预测。

Complex modeling with detailed temporal predictors does not improve health records-based suicide risk prediction.

作者信息

Shortreed Susan M, Walker Rod L, Johnson Eric, Wellman Robert, Cruz Maricela, Ziebell Rebecca, Coley R Yates, Yaseen Zimri S, Dharmarajan Sai, Penfold Robert B, Ahmedani Brian K, Rossom Rebecca C, Beck Arne, Boggs Jennifer M, Simon Greg E

机构信息

Kaiser Permanente Washington Health Research Institute, 1730 Minor Avenue, Ste 1600, Seattle, WA, 98101, USA.

Department of Biostatistics, University of Washington, 1705 NE Pacific St, Seattle, WA, 98195, USA.

出版信息

NPJ Digit Med. 2023 Mar 23;6(1):47. doi: 10.1038/s41746-023-00772-4.

Abstract

Suicide risk prediction models can identify individuals for targeted intervention. Discussions of transparency, explainability, and transportability in machine learning presume complex prediction models with many variables outperform simpler models. We compared random forest, artificial neural network, and ensemble models with 1500 temporally defined predictors to logistic regression models. Data from 25,800,888 mental health visits made by 3,081,420 individuals in 7 health systems were used to train and evaluate suicidal behavior prediction models. Model performance was compared across several measures. All models performed well (area under the receiver operating curve [AUC]: 0.794-0.858). Ensemble models performed best, but improvements over a regression model with 100 predictors were minimal (AUC improvements: 0.006-0.020). Results are consistent across performance metrics and subgroups defined by race, ethnicity, and sex. Our results suggest simpler parametric models, which are easier to implement as part of routine clinical practice, perform comparably to more complex machine learning methods.

摘要

自杀风险预测模型可以识别出需要进行针对性干预的个体。机器学习中关于透明度、可解释性和可迁移性的讨论假定,具有许多变量的复杂预测模型优于简单模型。我们将随机森林、人工神经网络以及具有1500个按时间定义的预测因子的集成模型与逻辑回归模型进行了比较。来自7个医疗系统中3081420名个体的25800888次心理健康就诊数据被用于训练和评估自杀行为预测模型。通过多种指标对模型性能进行了比较。所有模型表现良好(受试者操作特征曲线下面积[AUC]:0.794 - 0.858)。集成模型表现最佳,但相较于具有100个预测因子的回归模型,其改进幅度极小(AUC改进:0.006 - 0.020)。在性能指标以及按种族、族裔和性别定义的亚组中,结果都是一致的。我们的结果表明,更易于作为常规临床实践一部分实施的简单参数模型,其性能与更复杂的机器学习方法相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d257/10036475/88fb6eec5a2c/41746_2023_772_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验