Suppr超能文献

采用机器学习方法预测极早产儿 2 年认知结局。

Prediction of 2-Year Cognitive Outcomes in Very Preterm Infants Using Machine Learning Methods.

机构信息

INFANT Research Centre, University College Cork, Cork, Ireland.

Department of Electrical and Electronic Engineering, University College Cork, Cork, Ireland.

出版信息

JAMA Netw Open. 2023 Dec 1;6(12):e2349111. doi: 10.1001/jamanetworkopen.2023.49111.

Abstract

IMPORTANCE

Early intervention can improve cognitive outcomes for very preterm infants but is resource intensive. Identifying those who need early intervention most is important.

OBJECTIVE

To evaluate a model for use in very preterm infants to predict cognitive delay at 2 years of age using routinely available clinical and sociodemographic data.

DESIGN, SETTING, AND PARTICIPANTS: This prognostic study was based on the Swedish Neonatal Quality Register. Nationwide coverage of neonatal data was reached in 2011, and registration of follow-up data opened on January 1, 2015, with inclusion ending on September 31, 2022. A variety of machine learning models were trained and tested to predict cognitive delay. Surviving infants from neonatal units in Sweden with a gestational age younger than 32 weeks and complete data for the Bayley Scales of Infant and Toddler Development, Third Edition cognitive index or cognitive scale scores at 2 years of corrected age were assessed. Infants with major congenital anomalies were excluded.

EXPOSURES

A total of 90 variables (containing sociodemographic and clinical information on conditions, investigations, and treatments initiated during pregnancy, delivery, and neonatal unit admission) were examined for predictability.

MAIN OUTCOMES AND MEASURES

The main outcome was cognitive function at 2 years, categorized as screening positive for cognitive delay (cognitive index score <90) or exhibiting typical cognitive development (score ≥90).

RESULTS

A total of 1062 children (median [IQR] birth weight, 880 [720-1100] g; 566 [53.3%] male) were included in the modeling process, of whom 231 (21.8%) had cognitive delay. A logistic regression model containing 26 predictive features achieved an area under the receiver operating curve of 0.77 (95% CI, 0.71-0.83). The 5 most important features for cognitive delay were non-Scandinavian family language, prolonged duration of hospitalization, low birth weight, discharge to other destination than home, and the infant not receiving breastmilk on discharge. At discharge from the neonatal unit, the full model could correctly identify 605 of 650 infants who would have cognitive delay at 24 months (sensitivity, 0.93) and 1081 of 2350 who would not (specificity, 0.46).

CONCLUSIONS AND RELEVANCE

The findings of this study suggest that predictive modeling in neonatal care could enable early and targeted intervention for very preterm infants most at risk for developing cognitive impairment.

摘要

重要性

早期干预可以改善极早产儿的认知结果,但需要大量资源。确定哪些早产儿最需要早期干预非常重要。

目的

使用常规可用的临床和社会人口统计学数据,评估一种用于极早产儿的模型,以预测 2 岁时的认知延迟。

设计、地点和参与者:本预后研究基于瑞典新生儿质量登记处。2011 年实现了新生儿数据的全国范围覆盖,2015 年 1 月 1 日开始登记随访数据,纳入截止日期为 2022 年 9 月 31 日。为了预测认知延迟,我们训练和测试了各种机器学习模型。评估了胎龄小于 32 周且在 2 年校正年龄时具有完整的贝利婴幼儿发育量表第三版认知指数或认知量表评分数据的来自瑞典新生儿病房的存活婴儿。排除了患有重大先天性畸形的婴儿。

暴露因素

共检查了 90 个变量(包含妊娠、分娩和新生儿病房入院期间条件、检查和治疗的社会人口统计学和临床信息)的可预测性。

主要结果和测量指标

主要结果是 2 岁时的认知功能,分类为认知延迟筛查阳性(认知指数评分<90)或表现出典型认知发育(评分≥90)。

结果

共有 1062 名儿童(中位数[IQR]出生体重,880[720-1100]g;566[53.3%]男性)纳入建模过程,其中 231 名(21.8%)有认知延迟。包含 26 个预测特征的逻辑回归模型获得了 0.77(95%CI,0.71-0.83)的受试者工作特征曲线下面积。对认知延迟最重要的 5 个特征是非斯堪的纳维亚语系家庭语言、住院时间延长、低出生体重、出院到其他目的地而非家庭、以及婴儿出院时未接受母乳喂养。在新生儿病房出院时,完整模型可以正确识别出 24 个月时会有认知延迟的 650 名婴儿中的 605 名(敏感性,0.93)和 2350 名婴儿中的 1081 名(特异性,0.46)不会有认知延迟。

结论和相关性

这项研究的结果表明,新生儿护理中的预测建模可以为极早产儿中最有可能出现认知障碍的婴儿提供早期和有针对性的干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5416/10751596/317f2bdeea44/jamanetwopen-e2349111-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验