Suppr超能文献

在人类神经元中耗竭 Tau 可减轻 Aβ 驱动的毒性。

Tau depletion in human neurons mitigates Aβ-driven toxicity.

机构信息

Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.

Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.

出版信息

Mol Psychiatry. 2024 Jul;29(7):2009-2020. doi: 10.1038/s41380-024-02463-2. Epub 2024 Feb 15.

Abstract

Alzheimer's disease (AD) is an age-related neurodegenerative condition and the most common type of dementia, characterised by pathological accumulation of extracellular plaques and intracellular neurofibrillary tangles that mainly consist of amyloid-β (Aβ) and hyperphosphorylated tau aggregates, respectively. Previous studies in mouse models with a targeted knock-out of the microtubule-associated protein tau (Mapt) gene demonstrated that Aβ-driven toxicity is tau-dependent. However, human cellular models with chronic tau lowering remain unexplored. In this study, we generated stable tau-depleted human induced pluripotent stem cell (iPSC) isogenic panels from two healthy individuals using CRISPR-Cas9 technology. We then differentiated these iPSCs into cortical neurons in vitro in co-culture with primary rat cortical astrocytes before conducting electrophysiological and imaging experiments for a wide range of disease-relevant phenotypes. Both AD brain derived and recombinant Aβ were used in this study to elicit toxic responses from the iPSC-derived cortical neurons. We showed that tau depletion in human iPSC-derived cortical neurons caused considerable reductions in neuronal activity without affecting synaptic density. We also observed neurite outgrowth impairments in two of the tau-depleted lines used. Finally, tau depletion protected neurons from adverse effects by mitigating the impact of exogenous Aβ-induced hyperactivity, deficits in retrograde axonal transport of mitochondria, and neurodegeneration. Our study established stable human iPSC isogenic panels with chronic tau depletion from two healthy individuals. Cortical neurons derived from these iPSC lines showed that tau is essential in Aβ-driven hyperactivity, axonal transport deficits, and neurodegeneration, consistent with studies conducted in Mapt-/- mouse models. These findings highlight the protective effects of chronic tau lowering strategies in AD pathogenesis and reinforce the potential in clinical settings. The tau-depleted human iPSC models can now be applied at scale to investigate the involvement of tau in disease-relevant pathways and cell types.

摘要

阿尔茨海默病(AD)是一种与年龄相关的神经退行性疾病,也是最常见的痴呆类型,其特征是细胞外斑块和细胞内神经原纤维缠结的病理性积累,分别主要由淀粉样β(Aβ)和过度磷酸化的tau 聚集物组成。以前在靶向敲除微管相关蛋白 tau(Mapt)基因的小鼠模型中的研究表明,Aβ 驱动的毒性依赖于 tau。然而,慢性 tau 降低的人类细胞模型仍未得到探索。在这项研究中,我们使用 CRISPR-Cas9 技术从两名健康个体中生成了稳定的 tau 耗尽的人诱导多能干细胞(iPSC)同基因面板。然后,我们将这些 iPSC 在体外与原代大鼠皮质星形胶质细胞共培养分化为皮质神经元,然后进行广泛的与疾病相关表型的电生理和成像实验。在这项研究中,我们使用 AD 大脑来源的和重组的 Aβ 来从 iPSC 衍生的皮质神经元中引发毒性反应。我们表明,tau 耗尽会导致人类 iPSC 衍生的皮质神经元的神经元活动显着减少,而不影响突触密度。我们还观察到使用的两种 tau 耗尽系中神经突生长受损。最后,tau 耗尽通过减轻外源性 Aβ 诱导的过度活跃、线粒体逆行轴突运输缺陷和神经退行性变的影响,保护神经元免受不利影响。我们的研究建立了来自两名健康个体的具有慢性 tau 耗尽的稳定的人 iPSC 同基因面板。这些 iPSC 系衍生的皮质神经元表明,tau 在 Aβ 驱动的过度活跃、轴突运输缺陷和神经退行性变中是必不可少的,这与 Mapt-/- 小鼠模型中的研究一致。这些发现强调了慢性 tau 降低策略在 AD 发病机制中的保护作用,并增强了在临床环境中的潜力。现在可以大规模应用 tau 耗尽的人类 iPSC 模型来研究 tau 在与疾病相关的途径和细胞类型中的参与。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9b1/11408257/368677478b6b/41380_2024_2463_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验