Suppr超能文献

探讨应用漫反射光谱技术在肉瘤手术中进行术中组织鉴别。

Toward the use of diffuse reflection spectroscopy for intra-operative tissue discrimination during sarcoma surgery.

机构信息

Netherlands Cancer Institute, Image-Guided Surgery, Department of Surgery, Amsterdam, The Netherlands.

University of Twente, Faculty of Science and Technology, Enschede, The Netherlands.

出版信息

J Biomed Opt. 2024 Feb;29(2):027001. doi: 10.1117/1.JBO.29.2.027001. Epub 2024 Feb 15.

Abstract

SIGNIFICANCE

Accurately distinguishing tumor tissue from normal tissue is crucial to achieve complete resections during soft tissue sarcoma (STS) surgery while preserving critical structures. Incomplete tumor resections are associated with an increased risk of local recurrence and worse patient prognosis.

AIM

We evaluate the performance of diffuse reflectance spectroscopy (DRS) to distinguish tumor tissue from healthy tissue in STSs.

APPROACH

DRS spectra were acquired from different tissue types on multiple locations in 20 freshly excised sarcoma specimens. A -nearest neighbors classification model was trained to predict the tissue types of the measured locations, using binary and multiclass approaches.

RESULTS

Tumor tissue could be distinguished from healthy tissue with a classification accuracy of 0.90, sensitivity of 0.88, and specificity of 0.93 when well-differentiated liposarcomas were included. Excluding this subtype, the classification performance increased to an accuracy of 0.93, sensitivity of 0.94, and specificity of 0.93. The developed model showed a consistent performance over different histological subtypes and tumor locations.

CONCLUSIONS

Automatic tissue discrimination using DRS enables real-time intra-operative guidance, contributing to more accurate STS resections.

摘要

意义

在软组织肉瘤 (STS) 手术中,准确地区分肿瘤组织与正常组织对于实现完全切除并保护关键结构至关重要。不完全的肿瘤切除与局部复发风险增加和患者预后恶化相关。

目的

我们评估漫反射光谱 (DRS) 在 STS 中区分肿瘤组织与健康组织的性能。

方法

在 20 个新鲜切除的肉瘤标本的多个部位采集 DRS 光谱,来自不同的组织类型。使用二进制和多类方法,通过最近邻分类模型训练来预测测量位置的组织类型。

结果

当包括高分化脂肪肉瘤时,肿瘤组织可以与健康组织区分开来,分类准确率为 0.90,灵敏度为 0.88,特异性为 0.93。排除这种亚型后,分类性能提高到准确率为 0.93,灵敏度为 0.94,特异性为 0.93。所开发的模型在不同的组织学亚型和肿瘤位置表现出一致的性能。

结论

使用 DRS 进行自动组织区分可实现实时术中指导,有助于更准确地进行 STS 切除。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e30f/10869119/18985995f7a7/JBO-029-027001-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验