Suppr超能文献

利用拉曼光谱作为智能传感技术对软组织肉瘤标本进行分类

Classification of Soft Tissue Sarcoma Specimens with Raman Spectroscopy as Smart Sensing Technology.

作者信息

Li Liming, Mustahsan Vamiq M, He Guangyu, Tavernier Felix B, Singh Gurtej, Boyce Brendan F, Khan Fazel, Kao Imin

机构信息

Department of Mechanical Engineering, Stony Brook University, NY, USA.

Department of Pathology and Laboratory Medicine, Stony Brook University Hospital, Stony Brook, NY, USA.

出版信息

Cyborg Bionic Syst. 2021 Dec 6;2021:9816913. doi: 10.34133/2021/9816913. eCollection 2021.

Abstract

Intraoperative confirmation of negative resection margins is an essential component of soft tissue sarcoma surgery. Frozen section examination of samples from the resection bed after excision of sarcomas is the gold standard for intraoperative assessment of margin status. However, it takes time to complete histologic examination of these samples, and the technique does not provide real-time diagnosis in the operating room (OR), which delays completion of the operation. This paper presents a study and development of sensing technology using Raman spectroscopy that could be used for detection and classification of the tumor after resection with negative sarcoma margins in real time. We acquired Raman spectra from samples of sarcoma and surrounding benign muscle, fat, and dermis during surgery and developed (i) a quantitative method (QM) and (ii) a machine learning method (MLM) to assess the spectral patterns and determine if they could accurately identify these tissue types when compared to findings in adjacent H&E-stained frozen sections. High classification accuracy (>85%) was achieved with both methods, indicating that these four types of tissue can be identified using the analytical methodology. A hand-held Raman probe could be employed to further develop the methodology to obtain spectra in the OR to provide real-time in vivo capability for the assessment of sarcoma resection margin status.

摘要

术中确认切缘阴性是软组织肉瘤手术的重要组成部分。肉瘤切除后对切除床样本进行冰冻切片检查是术中评估切缘状态的金标准。然而,完成这些样本的组织学检查需要时间,而且该技术无法在手术室(OR)提供实时诊断,从而延迟了手术的完成。本文介绍了一项利用拉曼光谱的传感技术的研究与开发,该技术可用于实时检测和分类肉瘤切缘阴性切除后的肿瘤。我们在手术过程中获取了肉瘤样本以及周围良性肌肉、脂肪和真皮的拉曼光谱,并开发了(i)一种定量方法(QM)和(ii)一种机器学习方法(MLM),以评估光谱模式,并确定与相邻苏木精-伊红(H&E)染色冰冻切片的结果相比,它们是否能够准确识别这些组织类型。两种方法均实现了较高的分类准确率(>85%),表明使用该分析方法可以识别这四种类型的组织。可以使用手持式拉曼探头进一步开发该方法,以便在手术室中获取光谱,为评估肉瘤切缘状态提供实时体内检测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b1f/9494724/f86ad734fec6/CBSYSTEMS2021-9816913.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验