Howell Abigail A, Versoza Cyril J, Pfeifer Susanne P
Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.
Virus Evol. 2023 Dec 20;10(1):vead083. doi: 10.1093/ve/vead083. eCollection 2024.
The rapid emergence and spread of antimicrobial resistance across the globe have prompted the usage of bacteriophages (i.e. viruses that infect bacteria) in a variety of applications ranging from agriculture to biotechnology and medicine. In order to effectively guide the application of bacteriophages in these multifaceted areas, information about their host ranges-that is the bacterial strains or species that a bacteriophage can successfully infect and kill-is essential. Utilizing sixteen broad-spectrum (polyvalent) bacteriophages with experimentally validated host ranges, we here benchmark the performance of eleven recently developed computational host range prediction tools that provide a promising and highly scalable supplement to traditional, but laborious, experimental procedures. We show that machine- and deep-learning approaches offer the highest levels of accuracy and precision-however, their predominant predictions at the species- or genus-level render them ill-suited for applications outside of an ecosystems metagenomics framework. In contrast, only moderate sensitivity (<80 per cent) could be reached at the strain-level, albeit at low levels of precision (<40 per cent). Taken together, these limitations demonstrate that there remains room for improvement in the active scientific field of host prediction to combat the challenge of guiding experimental designs to identify the most promising bacteriophage candidates for any given application.
全球范围内抗菌药物耐药性的迅速出现和传播,促使噬菌体(即感染细菌的病毒)在从农业到生物技术和医学等各种应用中得到使用。为了有效地指导噬菌体在这些多方面领域的应用,有关其宿主范围的信息(即噬菌体能够成功感染和杀死的细菌菌株或物种)至关重要。我们利用十六种具有经过实验验证的宿主范围的广谱(多价)噬菌体,对十一种最近开发的计算宿主范围预测工具的性能进行了基准测试,这些工具为传统但费力的实验程序提供了一种有前景且高度可扩展的补充。我们表明,机器学习和深度学习方法具有最高水平的准确性和精确性——然而,它们在物种或属水平上的主要预测使其不适用于生态系统宏基因组学框架之外的应用。相比之下,尽管精确性较低(<40%),但在菌株水平上只能达到中等敏感性(<80%)。综上所述,这些局限性表明,在宿主预测这一活跃的科学领域中,仍有改进空间,以应对指导实验设计以确定任何给定应用中最有前景的噬菌体候选物这一挑战。