文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

iPHoP:一种集成机器学习框架,用于最大化基于宏基因组的古菌和细菌病毒的宿主预测。

iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria.

机构信息

DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.

Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain.

出版信息

PLoS Biol. 2023 Apr 21;21(4):e3002083. doi: 10.1371/journal.pbio.3002083. eCollection 2023 Apr.


DOI:10.1371/journal.pbio.3002083
PMID:37083735
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10155999/
Abstract

The extraordinary diversity of viruses infecting bacteria and archaea is now primarily studied through metagenomics. While metagenomes enable high-throughput exploration of the viral sequence space, metagenome-derived sequences lack key information compared to isolated viruses, in particular host association. Different computational approaches are available to predict the host(s) of uncultivated viruses based on their genome sequences, but thus far individual approaches are limited either in precision or in recall, i.e., for a number of viruses they yield erroneous predictions or no prediction at all. Here, we describe iPHoP, a two-step framework that integrates multiple methods to reliably predict host taxonomy at the genus rank for a broad range of viruses infecting bacteria and archaea, while retaining a low false discovery rate. Based on a large dataset of metagenome-derived virus genomes from the IMG/VR database, we illustrate how iPHoP can provide extensive host prediction and guide further characterization of uncultivated viruses.

摘要

目前,通过宏基因组学主要研究感染细菌和古菌的病毒的非凡多样性。虽然宏基因组能够高通量地探索病毒的序列空间,但与分离的病毒相比,宏基因组衍生的序列缺乏关键信息,特别是宿主相关性。有不同的计算方法可用于根据基因组序列预测未培养病毒的宿主,但到目前为止,每种方法要么在精度上,要么在召回率上都受到限制,即对于一些病毒,它们会产生错误的预测或根本没有预测。在这里,我们描述了 iPHoP,这是一个两步框架,它集成了多种方法,可以可靠地预测感染细菌和古菌的广泛病毒的属分类群宿主,同时保持低假阳性率。基于来自 IMG/VR 数据库的大量宏基因组衍生病毒基因组数据集,我们说明了 iPHoP 如何能够提供广泛的宿主预测,并指导未培养病毒的进一步特征描述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7872/10155999/4f21b402f9e8/pbio.3002083.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7872/10155999/7f72a49f2fcb/pbio.3002083.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7872/10155999/e583d9a12e6b/pbio.3002083.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7872/10155999/ee2d55fe560f/pbio.3002083.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7872/10155999/8c84d5ce59d3/pbio.3002083.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7872/10155999/4f21b402f9e8/pbio.3002083.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7872/10155999/7f72a49f2fcb/pbio.3002083.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7872/10155999/e583d9a12e6b/pbio.3002083.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7872/10155999/ee2d55fe560f/pbio.3002083.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7872/10155999/8c84d5ce59d3/pbio.3002083.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7872/10155999/4f21b402f9e8/pbio.3002083.g005.jpg

相似文献

[1]
iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria.

PLoS Biol. 2023-4

[2]
VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences.

Microbiome. 2020-6-10

[3]
A genomic catalog of Earth's microbiomes.

Nat Biotechnol. 2021-4

[4]
Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks.

Nat Biotechnol. 2019-5-6

[5]
IMG/VR v4: an expanded database of uncultivated virus genomes within a framework of extensive functional, taxonomic, and ecological metadata.

Nucleic Acids Res. 2023-1-6

[6]
IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses.

Nucleic Acids Res. 2021-1-8

[7]
Comprehensive discovery of CRISPR-targeted terminally redundant sequences in the human gut metagenome: Viruses, plasmids, and more.

PLoS Comput Biol. 2021-10

[8]
VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data.

Microbiome. 2017-7-6

[9]
Lytic archaeal viruses infect abundant primary producers in Earth's crust.

Nat Commun. 2021-7-30

[10]
Decomposing a San Francisco estuary microbiome using long-read metagenomics reveals species- and strain-level dominance from picoeukaryotes to viruses.

mSystems. 2024-9-17

引用本文的文献

[1]
Phage quest: a beginner's guide to explore viral diversity in the prokaryotic world.

Brief Bioinform. 2025-8-31

[2]
A prevalent huge phage clade in human and animal gut microbiomes.

Res Sq. 2025-8-19

[3]
Unique plastisphere viromes with habitat-dependent potential for modulating global methane cycle.

Nat Commun. 2025-8-29

[4]
Zeta CrAss-like Phages, a Separate Phage Family Using a Variety of Adaptive Mechanisms to Persist in Their Hosts.

Int J Mol Sci. 2025-8-8

[5]
The hidden genetic reservoir: structural variants as drivers of marine microbial and viral microdiversity.

Environ Microbiome. 2025-8-25

[6]
The genetic diversity and populational specificity of the human gut virome at single-nucleotide resolution.

Microbiome. 2025-8-20

[7]
A prevalent huge phage clade in human and animal gut microbiomes.

bioRxiv. 2025-8-11

[8]
Delivery mode impacts gut bacteriophage colonization during infancy.

Gut Microbes Rep. 2025

[9]
Global dominance of Haloquadratum walsbyi by a single genomovar with distinct gene content and viral cohorts from close relatives.

ISME J. 2025-1-2

[10]
Genomic insights into bacteriophages: a new frontier in AMR detection and phage therapy.

Brief Funct Genomics. 2025-1-15

本文引用的文献

[1]
vHULK, a New Tool for Bacteriophage Host Prediction Based on Annotated Genomic Features and Neural Networks.

Phage (New Rochelle). 2022-12-1

[2]
INfrastructure for a PHAge REference Database: Identification of Large-Scale Biases in the Current Collection of Cultured Phage Genomes.

Phage (New Rochelle). 2021-12-1

[3]
CHERRY: a Computational metHod for accuratE pRediction of virus-pRokarYotic interactions using a graph encoder-decoder model.

Brief Bioinform. 2022-9-20

[4]
PHISDetector: A Tool to Detect Diverse In Silico Phage-host Interaction Signals for Virome Studies.

Genomics Proteomics Bioinformatics. 2022-6

[5]
PHIST: fast and accurate prediction of prokaryotic hosts from metagenomic viral sequences.

Bioinformatics. 2022-2-7

[6]
Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local and global viral populations.

Microbiome. 2021-11-26

[7]
Taxonomy-aware, sequence similarity ranking reliably predicts phage-host relationships.

BMC Biol. 2021-10-8

[8]
DeepHost: phage host prediction with convolutional neural network.

Brief Bioinform. 2022-1-17

[9]
GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy.

Nucleic Acids Res. 2022-1-7

[10]
PHIAF: prediction of phage-host interactions with GAN-based data augmentation and sequence-based feature fusion.

Brief Bioinform. 2022-1-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索