Suppr超能文献

将言语自动分析作为亚临床精神病性体验的一个指标

Automated analysis of speech as a marker of sub-clinical psychotic experiences.

作者信息

Olah Julianna, Spencer Thomas, Cummins Nicholas, Diederen Kelly

机构信息

Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.

Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.

出版信息

Front Psychiatry. 2024 Feb 1;14:1265880. doi: 10.3389/fpsyt.2023.1265880. eCollection 2023.

Abstract

Automated speech analysis techniques, when combined with artificial intelligence and machine learning, show potential in capturing and predicting a wide range of psychosis symptoms, garnering attention from researchers. These techniques hold promise in predicting the transition to clinical psychosis from at-risk states, as well as relapse or treatment response in individuals with clinical-level psychosis. However, challenges in scientific validation hinder the translation of these techniques into practical applications. Although sub-clinical research could aid to tackle most of these challenges, there have been only few studies conducted in speech and psychosis research in non-clinical populations. This work aims to facilitate this work by summarizing automated speech analytical concepts and the intersection of this field with psychosis research. We review psychosis continuum and sub-clinical psychotic experiences, and the benefits of researching them. Then, we discuss the connection between speech and psychotic symptoms. Thirdly, we overview current and state-of-the art approaches to the automated analysis of speech both in terms of language use (text-based analysis) and vocal features (audio-based analysis). Then, we review techniques applied in subclinical population and findings in these samples. Finally, we discuss research challenges in the field, recommend future research endeavors and outline how research in subclinical populations can tackle the listed challenges.

摘要

自动语音分析技术与人工智能和机器学习相结合时,在捕捉和预测多种精神病症状方面显示出潜力,从而引起了研究人员的关注。这些技术有望预测从高危状态向临床精神病的转变,以及临床水平精神病患者的复发或治疗反应。然而,科学验证方面的挑战阻碍了这些技术转化为实际应用。尽管亚临床研究有助于应对其中大部分挑战,但在非临床人群的语音与精神病研究方面开展的研究很少。这项工作旨在通过总结自动语音分析概念以及该领域与精神病研究的交叉点来推动这项工作。我们回顾了精神病连续体和亚临床精神病体验,以及研究它们的益处。然后,我们讨论语音与精神病症状之间的联系。第三,我们概述了当前和最先进的语音自动分析方法,包括语言使用(基于文本的分析)和语音特征(基于音频的分析)方面。然后,我们回顾了在亚临床人群中应用的技术以及这些样本中的研究结果。最后,我们讨论该领域的研究挑战,推荐未来的研究方向,并概述亚临床人群的研究如何应对所列挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e395/10867252/ba99e2f45d88/fpsyt-14-1265880-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验