Suppr超能文献

基于深度学习的脂肪抑制图像相减方法用于膝关节磁共振成像异常检测的可行性

Feasibility of the fat-suppression image-subtraction method using deep learning for abnormality detection on knee MRI.

作者信息

Kasuya Shusuke, Inaoka Tsutomu, Wada Akihiko, Nakatsuka Tomoya, Nakagawa Koichi, Terada Hitoshi

机构信息

Department of Radiology, Toho University Sakura Medical Center, Sakura, Japan.

Department of Radiology, Juntendo University, Tokyo, Japan.

出版信息

Pol J Radiol. 2023 Dec 8;88:e562-e573. doi: 10.5114/pjr.2023.133660. eCollection 2023.

Abstract

PURPOSE

To evaluate the feasibility of using a deep learning (DL) model to generate fat-suppression images and detect abnormalities on knee magnetic resonance imaging (MRI) through the fat-suppression image-subtraction method.

MATERIAL AND METHODS

A total of 45 knee MRI studies in patients with knee disorders and 12 knee MRI studies in healthy volunteers were enrolled. The DL model was developed using 2-dimensional convolutional neural networks for generating fat-suppression images and subtracting generated fat-suppression images without any abnormal findings from those with normal/abnormal findings and detecting/classifying abnormalities on knee MRI. The image qualities of the generated fat-suppression images and subtraction-images were assessed. The accuracy, average precision, average recall, F-measure, sensitivity, and area under the receiver operator characteristic curve (AUROC) of DL for each abnormality were calculated.

RESULTS

A total of 2472 image datasets, each consisting of one slice of original T1WI, original intermediate-weighted images, generated fat-suppression (FS)-intermediate-weighted images without any abnormal findings, generated FS-intermediate-weighted images with normal/abnormal findings, and subtraction images between the generated FS-intermediate-weighted images at the same cross-section, were created. The generated fat-suppression images were of adequate image quality. Of the 2472 subtraction-images, 2203 (89.1%) were judged to be of adequate image quality. The accuracies for overall abnormalities, anterior cruciate ligament, bone marrow, cartilage, meniscus, and others were 89.5-95.1%. The average precision, average recall, and F-measure were 73.4-90.6%, 77.5-89.4%, and 78.4-89.4%, respectively. The sensitivity was 57.4-90.5%. The AUROCs were 0.910-0.979.

CONCLUSIONS

The DL model was able to generate fat-suppression images of sufficient quality to detect abnormalities on knee MRI through the fat-suppression image-subtraction method.

摘要

目的

评估使用深度学习(DL)模型通过脂肪抑制图像减法生成脂肪抑制图像并检测膝关节磁共振成像(MRI)异常的可行性。

材料与方法

纳入45例膝关节疾病患者的膝关节MRI研究以及12例健康志愿者的膝关节MRI研究。使用二维卷积神经网络开发DL模型,用于生成脂肪抑制图像,从有正常/异常表现的图像中减去无任何异常表现的生成脂肪抑制图像,并检测/分类膝关节MRI上的异常。评估生成的脂肪抑制图像和减法图像的图像质量。计算DL对每种异常的准确率、平均精度、平均召回率、F值、灵敏度和受试者操作特征曲线下面积(AUROC)。

结果

共创建了2472个图像数据集,每个数据集由一片原始T1加权成像、原始中等加权图像、无任何异常表现的生成脂肪抑制(FS)中等加权图像、有正常/异常表现的生成FS中等加权图像以及同一横截面生成的FS中等加权图像之间的减法图像组成。生成的脂肪抑制图像具有足够的图像质量。在2472个减法图像中,2203个(89.1%)被判定为具有足够的图像质量。总体异常、前交叉韧带、骨髓、软骨、半月板及其他方面的准确率为89.5% - 95.1%。平均精度、平均召回率和F值分别为73.4% - 90.6%、77.5% - 89.4%和78.4% - 89.4%。灵敏度为57.4% - 90.5%。AUROC为0.910 - 0.979。

结论

DL模型能够生成质量足够高的脂肪抑制图像,通过脂肪抑制图像减法检测膝关节MRI上的异常。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5539/10867951/745e0096bda8/PJR-88-52029-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验