Suppr超能文献

人工智能显示出在多种模式下增强骨科成像的潜力:一项系统综述。

Artificial intelligence demonstrates potential to enhance orthopaedic imaging across multiple modalities: A systematic review.

作者信息

Longo Umile Giuseppe, Lalli Alberto, Nicodemi Guido, Pisani Matteo Giuseppe, De Sire Alessandro, D'Hooghe Pieter, Nazarian Ara, Oeding Jacob F, Zsidai Balint, Samuelsson Kristian

机构信息

Fondazione Policlinico Universitario Campus Bio-Medico Roma Italy.

Department of Medicine and Surgery Research Unit of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma Roma Italy.

出版信息

J Exp Orthop. 2025 May 7;12(2):e70259. doi: 10.1002/jeo2.70259. eCollection 2025 Apr.

Abstract

PURPOSE

While several artificial intelligence (AI)-assisted medical imaging applications are reported in the recent orthopaedic literature, comparison of the clinical efficacy and utility of these applications is currently lacking. The aim of this systematic review is to evaluate the effectiveness and reliability of AI applications in orthopaedic imaging, focusing on their impact on diagnostic accuracy, image segmentation and operational efficiency across various imaging modalities.

METHODS

Based on the PRISMA guidelines, a comprehensive literature search of PubMed, Cochrane and Scopus databases was performed, using combinations of keywords and MeSH descriptors ('AI', 'ML', 'deep learning', 'orthopaedic surgery' and 'imaging') from inception to March 2024. Included were studies published between September 2018 and February 2024, which evaluated machine learning (ML) model effectiveness in improving orthopaedic imaging. Studies with insufficient data regarding the output variable used to assess the reliability of the ML model, those applying deterministic algorithms, unrelated topics, protocol studies, and other systematic reviews were excluded from the final synthesis. The Joanna Briggs Institute (JBI) Critical Appraisal tool and the Risk Of Bias In Non-randomised Studies-of Interventions (ROBINS-I) tool were applied for the assessment of bias among the included studies.

RESULTS

The 53 included studies reported the use of 11.990.643 images from several diagnostic instruments. A total of 39 studies reported details in terms of the Dice Similarity Coefficient (DSC), while both accuracy and sensitivity were documented across 15 studies. Precision was reported by 14, specificity by nine, and the F1 score by four of the included studies. Three studies applied the area under the curve (AUC) method to evaluate ML model performance. Among the studies included in the final synthesis, Convolutional Neural Networks (CNN) emerged as the most frequently applied category of ML models, present in 17 studies (32%).

CONCLUSION

The systematic review highlights the diverse application of AI in orthopaedic imaging, demonstrating the capability of various machine learning models in accurately segmenting and analysing orthopaedic images. The results indicate that AI models achieve high performance metrics across different imaging modalities. However, the current body of literature lacks comprehensive statistical analysis and randomized controlled trials, underscoring the need for further research to validate these findings in clinical settings.

LEVEL OF EVIDENCE

Systematic Review; Level of evidence IV.

摘要

目的

虽然近期骨科文献报道了几种人工智能(AI)辅助医学成像应用,但目前缺乏对这些应用的临床疗效和实用性的比较。本系统评价的目的是评估AI应用在骨科成像中的有效性和可靠性,重点关注其对各种成像模式下诊断准确性、图像分割和操作效率的影响。

方法

根据PRISMA指南,对PubMed、Cochrane和Scopus数据库进行了全面的文献检索,使用从数据库建立到2024年3月的关键词和医学主题词(MeSH)描述符组合(“AI”、“ML”、“深度学习”、“骨外科”和“成像”)。纳入2018年9月至2024年2月期间发表的评估机器学习(ML)模型在改善骨科成像方面有效性的研究。关于用于评估ML模型可靠性的输出变量数据不足的研究、应用确定性算法的研究、不相关主题的研究、方案研究以及其他系统评价被排除在最终综合分析之外。应用乔安娜·布里格斯研究所(JBI)批判性评价工具和非随机干预性研究的偏倚风险(ROBINS-I)工具评估纳入研究中的偏倚。

结果

纳入的53项研究报告使用了来自多种诊断仪器的11990643张图像。共有39项研究报告了Dice相似系数(DSC)的详细信息,15项研究记录了准确性和敏感性。14项研究报告了精确率,9项研究报告了特异性,4项纳入研究报告了F1分数。3项研究应用曲线下面积(AUC)方法评估ML模型性能。在最终综合分析纳入的研究中,卷积神经网络(CNN)成为最常应用的ML模型类别,有17项研究(32%)使用。

结论

该系统评价突出了AI在骨科成像中的多样化应用,展示了各种机器学习模型在准确分割和分析骨科图像方面的能力。结果表明,AI模型在不同成像模式下均取得了较高的性能指标。然而,当前的文献缺乏全面的统计分析和随机对照试验,强调需要进一步研究以在临床环境中验证这些发现。

证据级别

系统评价;证据级别IV。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/943c/12056712/dae5073ff195/JEO2-12-e70259-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验