Suppr超能文献

基于磁共振影像的半月板撕裂诊断卷积神经网络模型的建立。

Development of convolutional neural network model for diagnosing meniscus tear using magnetic resonance image.

机构信息

Department of Information and Communication Engineering, Yeungnam University, Gyeongsan-si, Republic of Korea.

Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, 317-1, Daemyungdong, Namku, Daegu, 42415, Republic of Korea.

出版信息

BMC Musculoskelet Disord. 2022 May 30;23(1):510. doi: 10.1186/s12891-022-05468-6.

Abstract

BACKGROUND

Deep learning (DL) is an advanced machine learning approach used in diverse areas, such as image analysis, bioinformatics, and natural language processing. A convolutional neural network (CNN) is a representative DL model that is advantageous for image recognition and classification. In this study, we aimed to develop a CNN to detect meniscal tears and classify tear types using coronal and sagittal magnetic resonance (MR) images of each patient.

METHODS

We retrospectively collected 599 cases (medial meniscus tear = 384, lateral meniscus tear = 167, and medial and lateral meniscus tear = 48) of knee MR images from patients with meniscal tears and 449 cases of knee MR images from patients without meniscal tears. To develop the DL model for evaluating the presence of meniscal tears, all the collected knee MR images of 1048 cases were used. To develop the DL model for evaluating the type of meniscal tear, 538 cases with meniscal tears (horizontal tear = 268, complex tear = 147, radial tear = 48, and longitudinal tear = 75) and 449 cases without meniscal tears were used. Additionally, a CNN algorithm was used. To measure the model's performance, 70% of the included data were randomly assigned to the training set, and the remaining 30% were assigned to the test set.

RESULTS

The area under the curves (AUCs) of our model were 0.889, 0.817, and 0.924 for medial meniscal tears, lateral meniscal tears, and medial and lateral meniscal tears, respectively. The AUCs of the horizontal, complex, radial, and longitudinal tears were 0.761, 0.850, 0.601, and 0.858, respectively.

CONCLUSION

Our study showed that the CNN model has the potential to be used in diagnosing the presence of meniscal tears and differentiating the types of meniscal tears.

摘要

背景

深度学习(DL)是一种应用于图像分析、生物信息学和自然语言处理等多个领域的先进机器学习方法。卷积神经网络(CNN)是一种代表性的 DL 模型,它在图像识别和分类方面具有优势。在这项研究中,我们旨在开发一种 CNN,使用每位患者的冠状面和矢状面磁共振(MR)图像来检测半月板撕裂并对撕裂类型进行分类。

方法

我们回顾性地收集了 599 例(内侧半月板撕裂 384 例,外侧半月板撕裂 167 例,内侧和外侧半月板撕裂 48 例)半月板撕裂患者的膝关节 MR 图像和 449 例无半月板撕裂患者的膝关节 MR 图像。为了开发用于评估半月板撕裂存在的 DL 模型,使用了 1048 例膝关节 MR 图像的所有收集数据。为了开发用于评估半月板撕裂类型的 DL 模型,使用了 538 例有半月板撕裂(水平撕裂 268 例,复杂撕裂 147 例,放射状撕裂 48 例,纵向撕裂 75 例)和 449 例无半月板撕裂的患者的膝关节 MR 图像。此外,我们还使用了 CNN 算法。为了衡量模型的性能,将包含数据的 70%随机分配到训练集,其余 30%分配到测试集。

结果

我们的模型对内侧半月板撕裂、外侧半月板撕裂和内侧和外侧半月板撕裂的曲线下面积(AUC)分别为 0.889、0.817 和 0.924。水平、复杂、放射状和纵向撕裂的 AUC 分别为 0.761、0.850、0.601 和 0.858。

结论

我们的研究表明,CNN 模型具有用于诊断半月板撕裂和区分半月板撕裂类型的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40e5/9150332/1aaf7c3ea02e/12891_2022_5468_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验