Nigam AkshatKumar, Pollice Robert, Friederich Pascal, Aspuru-Guzik Alán
Chemical Physics Theory Group, Department of Chemistry, University of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada
Department of Computer Science, University of Toronto 40 St. George St Toronto Ontario M5S 2E4 Canada.
Chem Sci. 2024 Jan 11;15(7):2618-2639. doi: 10.1039/d3sc05306g. eCollection 2024 Feb 14.
The design of molecules requires multi-objective optimizations in high-dimensional chemical space with often conflicting target properties. To navigate this space, classical workflows rely on the domain knowledge and creativity of human experts, which can be the bottleneck in high-throughput approaches. Herein, we present an artificial molecular design workflow relying on a genetic algorithm and a deep neural network to find a new family of organic emitters with inverted singlet-triplet gaps and appreciable fluorescence rates. We combine high-throughput virtual screening and inverse design infused with domain knowledge and artificial intelligence to accelerate molecular generation significantly. This enabled us to explore more than 800 000 potential emitter molecules and find more than 10 000 candidates estimated to have inverted singlet-triplet gaps (INVEST) and appreciable fluorescence rates, many of which likely emit blue light. This class of molecules has the potential to realize a new generation of organic light-emitting diodes.
分子设计需要在高维化学空间中进行多目标优化,而目标属性往往相互冲突。为了在这个空间中导航,传统的工作流程依赖于人类专家的领域知识和创造力,这可能成为高通量方法的瓶颈。在此,我们提出了一种基于遗传算法和深度神经网络的人工分子设计工作流程,以寻找具有反转单重态-三重态能隙和可观荧光速率的新型有机发光体家族。我们将高通量虚拟筛选和融入领域知识与人工智能的逆向设计相结合,以显著加速分子生成。这使我们能够探索超过800000个潜在的发光体分子,并找到超过10000个估计具有反转单重态-三重态能隙(INVEST)和可观荧光速率的候选分子,其中许多可能发出蓝光。这类分子有潜力实现新一代有机发光二极管。