Suppr超能文献

有机发光体的人工设计:一种由深度神经网络增强的遗传算法

Artificial design of organic emitters a genetic algorithm enhanced by a deep neural network.

作者信息

Nigam AkshatKumar, Pollice Robert, Friederich Pascal, Aspuru-Guzik Alán

机构信息

Chemical Physics Theory Group, Department of Chemistry, University of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada

Department of Computer Science, University of Toronto 40 St. George St Toronto Ontario M5S 2E4 Canada.

出版信息

Chem Sci. 2024 Jan 11;15(7):2618-2639. doi: 10.1039/d3sc05306g. eCollection 2024 Feb 14.

Abstract

The design of molecules requires multi-objective optimizations in high-dimensional chemical space with often conflicting target properties. To navigate this space, classical workflows rely on the domain knowledge and creativity of human experts, which can be the bottleneck in high-throughput approaches. Herein, we present an artificial molecular design workflow relying on a genetic algorithm and a deep neural network to find a new family of organic emitters with inverted singlet-triplet gaps and appreciable fluorescence rates. We combine high-throughput virtual screening and inverse design infused with domain knowledge and artificial intelligence to accelerate molecular generation significantly. This enabled us to explore more than 800 000 potential emitter molecules and find more than 10 000 candidates estimated to have inverted singlet-triplet gaps (INVEST) and appreciable fluorescence rates, many of which likely emit blue light. This class of molecules has the potential to realize a new generation of organic light-emitting diodes.

摘要

分子设计需要在高维化学空间中进行多目标优化,而目标属性往往相互冲突。为了在这个空间中导航,传统的工作流程依赖于人类专家的领域知识和创造力,这可能成为高通量方法的瓶颈。在此,我们提出了一种基于遗传算法和深度神经网络的人工分子设计工作流程,以寻找具有反转单重态-三重态能隙和可观荧光速率的新型有机发光体家族。我们将高通量虚拟筛选和融入领域知识与人工智能的逆向设计相结合,以显著加速分子生成。这使我们能够探索超过800000个潜在的发光体分子,并找到超过10000个估计具有反转单重态-三重态能隙(INVEST)和可观荧光速率的候选分子,其中许多可能发出蓝光。这类分子有潜力实现新一代有机发光二极管。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a5/10866360/0747160f04aa/d3sc05306g-f1.jpg

相似文献

1
Artificial design of organic emitters a genetic algorithm enhanced by a deep neural network.
Chem Sci. 2024 Jan 11;15(7):2618-2639. doi: 10.1039/d3sc05306g. eCollection 2024 Feb 14.
2
High-efficiency organic light-emitting diodes with fluorescent emitters.
Nat Commun. 2014 May 30;5:4016. doi: 10.1038/ncomms5016.
5
6
Dense Local Triplet States and Steric Shielding of a Multi-Resonance TADF Emitter Enable High-Performance Deep-Blue OLEDs.
Adv Mater. 2022 Dec;34(50):e2207416. doi: 10.1002/adma.202207416. Epub 2022 Nov 7.
7
Deep-Blue Oxadiazole-Containing Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes.
ACS Appl Mater Interfaces. 2018 Oct 3;10(39):33360-33372. doi: 10.1021/acsami.8b11136. Epub 2018 Sep 21.
8
Controlling Singlet-Triplet Energy Splitting for Deep-Blue Thermally Activated Delayed Fluorescence Emitters.
Angew Chem Int Ed Engl. 2017 Feb 1;56(6):1571-1575. doi: 10.1002/anie.201609459. Epub 2016 Dec 30.

引用本文的文献

3
Parametrization of κ-,-Oxazoline Preligands for Enantioselective Cobaltaelectro-Catalyzed C-H Activations.
ACS Catal. 2025 Feb 28;15(6):4450-4459. doi: 10.1021/acscatal.5c00250. eCollection 2025 Mar 21.
4
Quantum-computing-enhanced algorithm unveils potential KRAS inhibitors.
Nat Biotechnol. 2025 Jan 22. doi: 10.1038/s41587-024-02526-3.
5
Singlet-Triplet Inversions in Through-Bond Charge-Transfer States.
J Phys Chem Lett. 2024 Oct 10;15(40):10062-10067. doi: 10.1021/acs.jpclett.4c02317. Epub 2024 Sep 26.
6
Augmenting genetic algorithms with machine learning for inverse molecular design.
Chem Sci. 2024 Sep 11;15(38):15522-39. doi: 10.1039/d4sc02934h.

本文引用的文献

1
Double-bond delocalization in non-alternant hydrocarbons induces inverted singlet-triplet gaps.
Chem Sci. 2023 Sep 7;14(38):10458-10466. doi: 10.1039/d3sc03409g. eCollection 2023 Oct 4.
2
Identification of Unknown Inverted Singlet-Triplet Cores by High-Throughput Virtual Screening.
J Am Chem Soc. 2023 Sep 13;145(36):19790-19799. doi: 10.1021/jacs.3c05452. Epub 2023 Aug 28.
3
Symmetry-Induced Singlet-Triplet Inversions in Non-Alternant Hydrocarbons.
Angew Chem Int Ed Engl. 2023 Apr 3;62(15):e202218156. doi: 10.1002/anie.202218156. Epub 2023 Mar 3.
4
Delayed fluorescence from inverted singlet and triplet excited states.
Nature. 2022 Sep;609(7927):502-506. doi: 10.1038/s41586-022-05132-y. Epub 2022 Sep 14.
5
Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design.
Digit Discov. 2022 May 3;1(4):390-404. doi: 10.1039/d2dd00003b. eCollection 2022 Aug 8.
6
On the origin of the inverted singlet-triplet gap of the 5th generation light-emitting molecules.
Phys Chem Chem Phys. 2022 Aug 10;24(31):18713-18721. doi: 10.1039/d2cp02364d.
7
Model agnostic generation of counterfactual explanations for molecules.
Chem Sci. 2022 Feb 16;13(13):3697-3705. doi: 10.1039/d1sc05259d. eCollection 2022 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验