Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands.
Tissue Eng Regen Med. 2024 Apr;21(3):499-511. doi: 10.1007/s13770-023-00621-1. Epub 2024 Feb 17.
Dysregulation of skin metabolism is associated with a plethora of diseases such as psoriasis and dermatitis. Until now, reconstructed human skin (RhS) models lack the metabolic potential of native human skin, thereby limiting their relevance to study human healthy and diseased skin. We aimed to determine whether incorporation of an adipocyte-containing hypodermis into RhS improves its metabolic potential and to identify major metabolic pathways up-regulated in adipose-RhS.
Primary human keratinocytes, fibroblasts and differentiated adipose-derived stromal cells were co-cultured in a collagen/fibrin scaffold to create an adipose-RhS. The model was extensively characterized structurally in two- and three-dimensions, by cytokine secretion and RNA-sequencing for metabolic enzyme expression.
Adipose-RhS showed increased secretion of adipokines. Both RhS and adipose-RhS expressed 29 of 35 metabolic genes expressed in ex vivo native human skin. Addition of the adipose layer resulted in up-regulation of 286 genes in the dermal-adipose fraction of which 7 were involved in phase I (CYP19A1, CYP4F22, CYP3A5, ALDH3B2, EPHX3) and phase II (SULT2B1, GPX3) metabolism. Vitamin A, D and carotenoid metabolic pathways were enriched. Additionally, pro-inflammatory (IL-1β, IL-18, IL-23, IL-33, IFN-α2, TNF-α) and anti-inflammatory cytokine (IL-10, IL-12p70) secretion was reduced in adipose-RhS.
Adipose-RhS mimics healthy native human skin more closely than traditional RhS since it has a less inflamed phenotype and a higher metabolic activity, indicating the contribution of adipocytes to tissue homeostasis. Therefore it is better suited to study onset of skin diseases and the effect of xenobiotics.
皮肤代谢失调与许多疾病有关,如银屑病和皮炎。到目前为止,重建的人类皮肤(RhS)模型缺乏天然人类皮肤的代谢潜力,从而限制了它们对研究人类健康和患病皮肤的相关性。我们旨在确定将含有脂肪细胞的皮下组织纳入 RhS 是否能提高其代谢潜力,并确定在脂肪-RhS 中上调的主要代谢途径。
原代人角质形成细胞、成纤维细胞和分化的脂肪来源基质细胞在胶原/纤维蛋白支架中共同培养,以创建脂肪-RhS。该模型在二维和三维结构上进行了广泛的表征,通过细胞因子分泌和代谢酶表达的 RNA 测序来鉴定。
脂肪-RhS 表现出增加的脂肪因子分泌。RhS 和脂肪-RhS 均表达了 35 种在离体天然人类皮肤中表达的代谢基因中的 29 种。添加脂肪层导致真皮-脂肪部分的 286 个基因上调,其中 7 个基因参与了 I 期(CYP19A1、CYP4F22、CYP3A5、ALDH3B2、EPHX3)和 II 期(SULT2B1、GPX3)代谢。维生素 A、D 和类胡萝卜素代谢途径丰富。此外,脂肪-RhS 中促炎细胞因子(IL-1β、IL-18、IL-23、IL-33、IFN-α2、TNF-α)和抗炎细胞因子(IL-10、IL-12p70)的分泌减少。
脂肪-RhS 比传统的 RhS 更能模拟健康的天然人类皮肤,因为它具有炎症表型较轻和更高的代谢活性,表明脂肪细胞对组织稳态的贡献。因此,它更适合研究皮肤疾病的发病机制和外源性物质的影响。