Suppr超能文献

多目标深度强化学习方法在交叉口安全、效率和脱碳的协同优化下的自适应交通信号控制系统中的应用。

Multi-objective deep reinforcement learning approach for adaptive traffic signal control system with concurrent optimization of safety, efficiency, and decarbonization at intersections.

机构信息

School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China.

School of Resources and Safety Engineering, Central South University, Changsha 410083, China.

出版信息

Accid Anal Prev. 2024 May;199:107451. doi: 10.1016/j.aap.2023.107451. Epub 2024 Feb 16.

Abstract

This study introduces a novel approach to adaptive traffic signal control (ATSC) by leveraging multi-objective deep reinforcement learning (DRL) techniques. The proposed scheme aims to optimize control strategies at intersections while concurrently addressing the objectives of safety, efficiency, and decarbonization. Traditional ATSC schemes primarily emphasize traffic efficiency and often lack the ability to adapt to real-time dynamic traffic conditions. To overcome these limitations, the study proposes a DRL-based ATSC algorithm that integrates the Dueling Double Deep Q Network (D3QN) framework. The performance of the proposed algorithm is evaluated through a simulated intersection in Changsha, China. Specifically, the proposed ATSC algorithm outperforms both traditional ATSC and ATSC with efficiency optimization only algorithms by achieving more than a 16% reduction in traffic conflicts and a 4% reduction in carbon emissions. In terms of traffic efficiency, waiting time reduces by 18% compared to traditional ATSC, but slightly increases (0.64%) compared to DRL-based ATSC algorithm that integrates D3QN framework. This small increase indicates a trade-off between efficiency and other objectives such as safety and decarbonization. Moreover, the proposed scheme demonstrates superior performance specifically in highly traffic-demand scenarios in terms of all three objectives. The findings of this study contribute to the advancement of traffic control systems by providing a practical and effective solution for optimizing signal control strategies in real-world traffic scenarios.

摘要

本研究提出了一种利用多目标深度强化学习(DRL)技术的自适应交通信号控制(ATSC)新方法。该方案旨在优化交叉口的控制策略,同时实现安全、效率和脱碳的目标。传统的 ATSC 方案主要强调交通效率,往往缺乏适应实时动态交通条件的能力。为了克服这些限制,本研究提出了一种基于 DRL 的 ATSC 算法,该算法集成了双人深度 Q 网络(D3QN)框架。通过在中国长沙的一个模拟交叉口对所提出的算法进行评估。具体来说,所提出的 ATSC 算法在交通冲突减少超过 16%和碳排放减少 4%方面优于传统 ATSC 和仅优化效率的 ATSC 算法。在交通效率方面,与传统 ATSC 相比,等待时间减少了 18%,但与集成 D3QN 框架的 DRL 基础 ATSC 算法相比略有增加(0.64%)。这种小的增加表明了在效率和安全、脱碳等其他目标之间的权衡。此外,该方案在所有三个目标方面都表现出了在高交通需求场景中的卓越性能。本研究的结果通过提供一种实用有效的解决方案,为优化现实交通场景中的信号控制策略,为交通控制系统的发展做出了贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验