Suppr超能文献

基于EXP-DDQN算法的考虑行人的智能互联自适应信号控制

Intelligent connected adaptive signal control considering pedestrians based on the EXP-DDQN algorithm.

作者信息

Cao Sen, Sun Yaping, Zhang Xingchen, Yang Mengyang

机构信息

School of Traffic Engineering, Huanghe Jiaotong University, Jiaozuo, China.

School of Traffic and Transportation, Beijing Jiaotong University, Beijing, China.

出版信息

PLoS One. 2025 Jun 6;20(6):e0322945. doi: 10.1371/journal.pone.0322945. eCollection 2025.

Abstract

With the increasing integration of Connected and Automated Vehicles (CAVs) and Human-Driven Vehicles (HDVs) in urban traffic systems, along with highly variable pedestrian crossing demands, traffic management faces unprecedented challenges. This study introduces an improved adaptive signal control approach using an enhanced dual-layer deep Q-network (EXP-DDQN), specifically tailored for intelligent connected environments. The proposed model incorporates a comprehensive state representation that integrates CAV-HDV car-following dynamics and pedestrian flow variability. Additionally, it features an improved MC Greedy exploration strategy and prioritized experience replay, enabling efficient learning and adaptability in highly dynamic traffic scenarios. These advancements allow the system to dynamically adjust green light durations, phase switches, and pedestrian phase activations, achieving a fine balance between efficiency, safety, and signal stability. Experimental evaluations underscore the model's distinct advantages, including a 26.9% reduction in vehicle-pedestrian conflicts, a 31.83% decrease in queue lengths, a 32.52% reduction in delays compared to fixed-time strategies, and a 35.17% reduction in pedestrian crossing wait times. Furthermore, EXP-DDQN demonstrates significant improvements over traditional DQN and DDQN methods across these metrics. These results underscore the method's distinct capability to address the complexities of mixed traffic scenarios, offering valuable insights for future urban traffic management systems.

摘要

随着联网自动驾驶车辆(CAV)和人类驾驶车辆(HDV)在城市交通系统中的融合不断增加,以及行人过街需求的高度变化,交通管理面临着前所未有的挑战。本研究引入了一种改进的自适应信号控制方法,即使用增强型双层深度Q网络(EXP-DDQN),该方法专门针对智能互联环境量身定制。所提出的模型包含了一个综合的状态表示,该表示整合了CAV-HDV跟车动态和行人流量变化。此外,它还具有改进的MC贪心探索策略和优先经验回放,能够在高度动态的交通场景中实现高效学习和适应性。这些进步使系统能够动态调整绿灯持续时间、相位切换和行人相位激活,在效率、安全性和信号稳定性之间实现良好平衡。实验评估突出了该模型的显著优势,包括与固定时间策略相比,车辆与行人冲突减少26.9%,队列长度减少31.83%,延误减少32.52%,行人过街等待时间减少35.17%。此外,在这些指标上,EXP-DDQN相对于传统的DQN和DDQN方法有显著改进。这些结果突出了该方法处理混合交通场景复杂性的独特能力,为未来城市交通管理系统提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6e0/12143511/4aea9f23cc07/pone.0322945.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验