Suppr超能文献

基于不完全多模态数据的鼻咽癌跨站点预后预测。

Cross-site prognosis prediction for nasopharyngeal carcinoma from incomplete multi-modal data.

机构信息

School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China.

School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China.

出版信息

Med Image Anal. 2024 Apr;93:103103. doi: 10.1016/j.media.2024.103103. Epub 2024 Feb 8.

Abstract

Accurate prognosis prediction for nasopharyngeal carcinoma based on magnetic resonance (MR) images assists in the guidance of treatment intensity, thus reducing the risk of recurrence and death. To reduce repeated labor and sufficiently explore domain knowledge, aggregating labeled/annotated data from external sites enables us to train an intelligent model for a clinical site with unlabeled data. However, this task suffers from the challenges of incomplete multi-modal examination data fusion and image data heterogeneity among sites. This paper proposes a cross-site survival analysis method for prognosis prediction of nasopharyngeal carcinoma from domain adaptation viewpoint. Utilizing a Cox model as the basic framework, our method equips it with a cross-attention based multi-modal fusion regularization. This regularization model effectively fuses the multi-modal information from multi-parametric MR images and clinical features onto a domain-adaptive space, despite the absence of some modalities. To enhance the feature discrimination, we also extend the contrastive learning technique to censored data cases. Compared with the conventional approaches which directly deploy a trained survival model in a new site, our method achieves superior prognosis prediction performance in cross-site validation experiments. These results highlight the key role of cross-site adaptability of our method and support its value in clinical practice.

摘要

基于磁共振(MR)图像的鼻咽癌准确预后预测有助于指导治疗强度,从而降低复发和死亡的风险。为了减少重复劳动并充分挖掘领域知识,从外部站点聚合标记/注释数据可使我们能够使用无标记数据为临床站点训练智能模型。然而,这项任务面临多模态检查数据融合不完整和站点间图像数据异质性的挑战。本文从域自适应的角度提出了一种用于鼻咽癌预后预测的跨站点生存分析方法。利用 Cox 模型作为基本框架,我们的方法为其配备了基于交叉注意力的多模态融合正则化。尽管某些模态缺失,该正则化模型仍可有效地将多参数 MR 图像和临床特征的多模态信息融合到一个域自适应空间中。为了增强特征的辨别力,我们还将对比学习技术扩展到删失数据案例。与直接在新站点部署训练好的生存模型的传统方法相比,我们的方法在跨站点验证实验中实现了更优的预后预测性能。这些结果突出了我们方法的跨站点适应性的关键作用,并支持其在临床实践中的价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验