Suppr超能文献

基于多任务深度学习的放射组学列线图在局部晚期鼻咽癌中的预后预测。

Multi-task deep learning-based radiomic nomogram for prognostic prediction in locoregionally advanced nasopharyngeal carcinoma.

机构信息

Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.

Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.

出版信息

Eur J Nucl Med Mol Imaging. 2023 Nov;50(13):3996-4009. doi: 10.1007/s00259-023-06399-7. Epub 2023 Aug 19.

Abstract

PURPOSE

Prognostic prediction is crucial to guide individual treatment for locoregionally advanced nasopharyngeal carcinoma (LA-NPC) patients. Recently, multi-task deep learning was explored for joint prognostic prediction and tumor segmentation in various cancers, resulting in promising performance. This study aims to evaluate the clinical value of multi-task deep learning for prognostic prediction in LA-NPC patients.

METHODS

A total of 886 LA-NPC patients acquired from two medical centers were enrolled including clinical data, [F]FDG PET/CT images, and follow-up of progression-free survival (PFS). We adopted a deep multi-task survival model (DeepMTS) to jointly perform prognostic prediction (DeepMTS-Score) and tumor segmentation from FDG-PET/CT images. The DeepMTS-derived segmentation masks were leveraged to extract handcrafted radiomics features, which were also used for prognostic prediction (AutoRadio-Score). Finally, we developed a multi-task deep learning-based radiomic (MTDLR) nomogram by integrating DeepMTS-Score, AutoRadio-Score, and clinical data. Harrell's concordance indices (C-index) and time-independent receiver operating characteristic (ROC) analysis were used to evaluate the discriminative ability of the proposed MTDLR nomogram. For patient stratification, the PFS rates of high- and low-risk patients were calculated using Kaplan-Meier method and compared with the observed PFS probability.

RESULTS

Our MTDLR nomogram achieved C-index of 0.818 (95% confidence interval (CI): 0.785-0.851), 0.752 (95% CI: 0.638-0.865), and 0.717 (95% CI: 0.641-0.793) and area under curve (AUC) of 0.859 (95% CI: 0.822-0.895), 0.769 (95% CI: 0.642-0.896), and 0.730 (95% CI: 0.634-0.826) in the training, internal validation, and external validation cohorts, which showed a statistically significant improvement over conventional radiomic nomograms. Our nomogram also divided patients into significantly different high- and low-risk groups.

CONCLUSION

Our study demonstrated that MTDLR nomogram can perform reliable and accurate prognostic prediction in LA-NPC patients, and also enabled better patient stratification, which could facilitate personalized treatment planning.

摘要

目的

对于局部晚期鼻咽癌(LA-NPC)患者,预后预测对于指导个体化治疗至关重要。最近,多任务深度学习已被探索用于各种癌症的联合预后预测和肿瘤分割,取得了有前景的性能。本研究旨在评估多任务深度学习在 LA-NPC 患者预后预测中的临床价值。

方法

共纳入来自两个医疗中心的 886 名 LA-NPC 患者,包括临床数据、[F]FDG PET/CT 图像和无进展生存期(PFS)的随访。我们采用深度多任务生存模型(DeepMTS)联合进行预后预测(DeepMTS-Score)和 FDG-PET/CT 图像的肿瘤分割。利用 DeepMTS 分割掩模提取手工制作的放射组学特征,这些特征也用于预后预测(AutoRadio-Score)。最后,我们通过整合 DeepMTS-Score、AutoRadio-Score 和临床数据,开发了一个基于多任务深度学习的放射组学(MTDLR)列线图。采用 Harrell 一致性指数(C-index)和时间独立的接收器工作特征(ROC)分析评估所提出的 MTDLR 列线图的判别能力。为了进行患者分层,使用 Kaplan-Meier 方法计算高风险和低风险患者的 PFS 率,并与观察到的 PFS 概率进行比较。

结果

我们的 MTDLR 列线图在训练、内部验证和外部验证队列中分别获得了 0.818(95%置信区间(CI):0.785-0.851)、0.752(95% CI:0.638-0.865)和 0.717(95% CI:0.641-0.793)的 C 指数和 0.859(95% CI:0.822-0.895)、0.769(95% CI:0.642-0.896)和 0.730(95% CI:0.634-0.826)的 AUC,与传统放射组学列线图相比,具有统计学显著改善。我们的列线图还将患者分为明显不同的高风险和低风险组。

结论

本研究表明,MTDLR 列线图可在 LA-NPC 患者中进行可靠且准确的预后预测,并且还能够实现更好的患者分层,从而有助于个性化治疗计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a22/10611876/7b03cd2539b7/259_2023_6399_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验