Marzban Sadegh, Srivastava Sonal, Kartika Sharon, Bravo Rafael, Safriel Rachel, Zarski Aidan, Anderson Alexander, Chung Christine H, Amelio Antonio L, West Jeffrey
Integrated Mathematical Oncology Dept., H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL.
Dept. of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL.
bioRxiv. 2024 Mar 13:2024.01.10.575036. doi: 10.1101/2024.01.10.575036.
Direct observation of immune cell trafficking patterns and tumor-immune interactions is unlikely in human tumors with currently available technology, but computational simulations based on clinical data can provide insight to test hypotheses. It is hypothesized that patterns of collagen formation evolve as a mechanism of immune escape, but the exact nature of the interaction between immune cells and collagen is poorly understood. Spatial data quantifying the degree of collagen fiber alignment in squamous cell carcinomas indicates that late stage disease is associated with highly aligned fibers. Here, we introduce a computational modeling framework (called Lenia) to discriminate between two hypotheses: immune cell migration that moves 1) parallel or 2) perpendicular to collagen fiber orientation. The modeling recapitulates immune-ECM interactions where collagen patterns provide immune protection, leading to an emergent inverse relationship between disease stage and immune coverage. We also illustrate the capabilities of Lenia to model the evolution of tumor progression and immune predation. Lenia provides a flexible framework for considering a spectrum of local (cell-scale) to global (tumor-scale) dynamics by defining a kernel cell-cell interaction function that governs tumor growth dynamics under immune predation with immune cell migration. Mathematical modeling provides important mechanistic insights into cell interactions. Short-range interaction kernels provide a mechanism for tumor cell survival under conditions with strong Allee effects, while asymmetric tumor-immune interaction kernels lead to poor immune response. Thus, the length scale of tumor-immune interactions drives tumor growth and infiltration.
利用现有技术在人类肿瘤中直接观察免疫细胞的迁移模式和肿瘤与免疫的相互作用不太可能实现,但基于临床数据的计算模拟可以为检验假设提供见解。据推测,胶原蛋白形成模式的演变是一种免疫逃逸机制,但免疫细胞与胶原蛋白之间相互作用的确切性质仍知之甚少。量化鳞状细胞癌中胶原纤维排列程度的空间数据表明,晚期疾病与高度排列的纤维有关。在此,我们引入了一个计算建模框架(称为Lenia)来区分两种假设:免疫细胞迁移是1)平行于还是2)垂直于胶原纤维方向移动。该建模概括了免疫与细胞外基质的相互作用,其中胶原蛋白模式提供免疫保护,导致疾病阶段与免疫覆盖之间出现反向关系。我们还展示了Lenia对肿瘤进展和免疫捕食演变进行建模的能力。Lenia通过定义一个核细胞 - 细胞相互作用函数,为考虑从局部(细胞尺度)到全局(肿瘤尺度)的一系列动态提供了一个灵活的框架,该函数在免疫捕食和免疫细胞迁移的情况下控制肿瘤生长动态。数学建模为细胞间相互作用提供了重要的机制见解。短程相互作用核为在强阿利效应条件下肿瘤细胞的存活提供了一种机制,而不对称的肿瘤 - 免疫相互作用核导致免疫反应不佳。因此,肿瘤 - 免疫相互作用的长度尺度驱动肿瘤生长和浸润。