文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于二代测序的罕见病诊断人工智能与数据库

Artificial intelligence and database for NGS-based diagnosis in rare disease.

作者信息

Choon Yee Wen, Choon Yee Fan, Nasarudin Nurul Athirah, Al Jasmi Fatma, Remli Muhamad Akmal, Alkayali Mohammed Hassan, Mohamad Mohd Saberi

机构信息

Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia.

Faculty of Data Science and Informatics, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia.

出版信息

Front Genet. 2024 Jan 25;14:1258083. doi: 10.3389/fgene.2023.1258083. eCollection 2023.


DOI:10.3389/fgene.2023.1258083
PMID:38371307
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10870236/
Abstract

Rare diseases (RDs) are rare complex genetic diseases affecting a conservative estimate of 300 million people worldwide. Recent Next-Generation Sequencing (NGS) studies are unraveling the underlying genetic heterogeneity of this group of diseases. NGS-based methods used in RDs studies have improved the diagnosis and management of RDs. Concomitantly, a suite of bioinformatics tools has been developed to sort through big data generated by NGS to understand RDs better. However, there are concerns regarding the lack of consistency among different methods, primarily linked to factors such as the lack of uniformity in input and output formats, the absence of a standardized measure for predictive accuracy, and the regularity of updates to the annotation database. Today, artificial intelligence (AI), particularly deep learning, is widely used in a variety of biological contexts, changing the healthcare system. AI has demonstrated promising capabilities in boosting variant calling precision, refining variant prediction, and enhancing the user-friendliness of electronic health record (EHR) systems in NGS-based diagnostics. This paper reviews the state of the art of AI in NGS-based genetics, and its future directions and challenges. It also compare several rare disease databases.

摘要

罕见病是一类罕见的复杂遗传疾病,据保守估计,全球有3亿人受其影响。最近的下一代测序(NGS)研究正在揭示这类疾病潜在的遗传异质性。用于罕见病研究的基于NGS的方法改善了罕见病的诊断和管理。与此同时,一系列生物信息学工具已被开发出来,用于梳理由NGS产生的大数据,以便更好地了解罕见病。然而,人们担心不同方法之间缺乏一致性,这主要与输入和输出格式缺乏统一性、缺乏预测准确性的标准化衡量标准以及注释数据库更新的规律性等因素有关。如今,人工智能(AI),尤其是深度学习,在各种生物学领域得到广泛应用,正在改变医疗保健系统。在基于NGS的诊断中,AI在提高变异检测精度、优化变异预测以及增强电子健康记录(EHR)系统的用户友好性方面已展现出令人期待的能力。本文综述了基于NGS的遗传学中AI的现状、未来方向和挑战。此外,还比较了几个罕见病数据库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21fc/10870236/c1f0a31dca91/fgene-14-1258083-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21fc/10870236/88727f2af4ee/fgene-14-1258083-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21fc/10870236/a7162e8ef8d4/fgene-14-1258083-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21fc/10870236/c1f0a31dca91/fgene-14-1258083-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21fc/10870236/88727f2af4ee/fgene-14-1258083-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21fc/10870236/a7162e8ef8d4/fgene-14-1258083-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21fc/10870236/c1f0a31dca91/fgene-14-1258083-g003.jpg

相似文献

[1]
Artificial intelligence and database for NGS-based diagnosis in rare disease.

Front Genet. 2024-1-25

[2]
Artificial intelligence (AI) and big data in cancer and precision oncology.

Comput Struct Biotechnol J. 2020-8-28

[3]
Machine learning random forest for predicting oncosomatic variant NGS analysis.

Sci Rep. 2021-11-8

[4]
Diagnosis of a Single-Nucleotide Variant in Whole-Exome Sequencing Data for Patients With Inherited Diseases: Machine Learning Study Using Artificial Intelligence Variant Prioritization.

JMIR Bioinform Biotechnol. 2022-9-15

[5]
Artificial Intelligence in Epigenetic Studies: Shedding Light on Rare Diseases.

Front Mol Biosci. 2021-5-5

[6]
Artificial Intelligence (AI) in Rare Diseases: Is the Future Brighter?

Genes (Basel). 2019-11-27

[7]
Toward Clinical Implementation of Next-Generation Sequencing-Based Genetic Testing in Rare Diseases: Where Are We?

Trends Genet. 2019-10-14

[8]
Artificial Intelligence and Cardiovascular Genetics.

Life (Basel). 2022-2-14

[9]
Applications of artificial intelligence multiomics in precision oncology.

J Cancer Res Clin Oncol. 2023-1

[10]
Integrative Analysis of Next-Generation Sequencing for Next-Generation Cancer Research toward Artificial Intelligence.

Cancers (Basel). 2021-6-24

引用本文的文献

[1]
Identification of Molecular Subtypes of B-Cell Acute Lymphoblastic Leukemia in Mexican Children by Whole-Transcriptome Analysis.

Int J Mol Sci. 2025-7-21

[2]
Integrating Artificial Intelligence in Next-Generation Sequencing: Advances, Challenges, and Future Directions.

Curr Issues Mol Biol. 2025-6-19

[3]
Advancing genome-based precision medicine: a review on machine learning applications for rare genetic disorders.

Brief Bioinform. 2025-7-2

[4]
Gaucher disease, state of the art and perspectives.

J Intern Med. 2025-9

[5]
GAINSeq: glaucoma pre-symptomatic detection using machine learning models driven by next-generation sequencing data.

Sci Rep. 2025-7-2

[6]
The Role of Artificial Intelligence in Identifying Gene Variants and Improving Diagnosis.

Genes (Basel). 2025-5-7

[7]
Pharmacogenomics and rare diseases: optimizing drug development and personalized therapeutics.

Pharmacogenomics. 2025

[8]
The role of public health in rare diseases: hemophilia as an example.

Front Public Health. 2025-3-20

[9]
Artificial Intelligence: A New Frontier in Rare Disease Early Diagnosis.

Cureus. 2025-2-22

本文引用的文献

[1]
Interpretable prioritization of splice variants in diagnostic next-generation sequencing.

Am J Hum Genet. 2021-11-4

[2]
The LORIS MyeliNeuroGene rare disease database for natural history studies and clinical trial readiness.

Orphanet J Rare Dis. 2021-7-23

[3]
Machine learning-based reclassification of germline variants of unknown significance: The RENOVO algorithm.

Am J Hum Genet. 2021-4-1

[4]
Improving diagnostics of rare genetic diseases with NGS approaches.

J Community Genet. 2021-4

[5]
A deep learning approach for filtering structural variants in short read sequencing data.

Brief Bioinform. 2021-7-20

[6]
Editorial: Advanced Interpretable Machine Learning Methods for Clinical NGS Big Data of Complex Hereditary Diseases.

Front Genet. 2020-10-23

[7]
Detecting pathogenic variants in autoimmune diseases using high-throughput sequencing.

Immunol Cell Biol. 2021-2

[8]
New Diagnostic Approaches for Undiagnosed Rare Genetic Diseases.

Annu Rev Genomics Hum Genet. 2020-8-31

[9]
Exploring the Consistency of the Quality Scores with Machine Learning for Next-Generation Sequencing Experiments.

Biomed Res Int. 2020-2-25

[10]
A call for global action for rare diseases in Africa.

Nat Genet. 2020-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索