Choon Yee Wen, Choon Yee Fan, Nasarudin Nurul Athirah, Al Jasmi Fatma, Remli Muhamad Akmal, Alkayali Mohammed Hassan, Mohamad Mohd Saberi
Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia.
Faculty of Data Science and Informatics, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia.
Front Genet. 2024 Jan 25;14:1258083. doi: 10.3389/fgene.2023.1258083. eCollection 2023.
Rare diseases (RDs) are rare complex genetic diseases affecting a conservative estimate of 300 million people worldwide. Recent Next-Generation Sequencing (NGS) studies are unraveling the underlying genetic heterogeneity of this group of diseases. NGS-based methods used in RDs studies have improved the diagnosis and management of RDs. Concomitantly, a suite of bioinformatics tools has been developed to sort through big data generated by NGS to understand RDs better. However, there are concerns regarding the lack of consistency among different methods, primarily linked to factors such as the lack of uniformity in input and output formats, the absence of a standardized measure for predictive accuracy, and the regularity of updates to the annotation database. Today, artificial intelligence (AI), particularly deep learning, is widely used in a variety of biological contexts, changing the healthcare system. AI has demonstrated promising capabilities in boosting variant calling precision, refining variant prediction, and enhancing the user-friendliness of electronic health record (EHR) systems in NGS-based diagnostics. This paper reviews the state of the art of AI in NGS-based genetics, and its future directions and challenges. It also compare several rare disease databases.
罕见病是一类罕见的复杂遗传疾病,据保守估计,全球有3亿人受其影响。最近的下一代测序(NGS)研究正在揭示这类疾病潜在的遗传异质性。用于罕见病研究的基于NGS的方法改善了罕见病的诊断和管理。与此同时,一系列生物信息学工具已被开发出来,用于梳理由NGS产生的大数据,以便更好地了解罕见病。然而,人们担心不同方法之间缺乏一致性,这主要与输入和输出格式缺乏统一性、缺乏预测准确性的标准化衡量标准以及注释数据库更新的规律性等因素有关。如今,人工智能(AI),尤其是深度学习,在各种生物学领域得到广泛应用,正在改变医疗保健系统。在基于NGS的诊断中,AI在提高变异检测精度、优化变异预测以及增强电子健康记录(EHR)系统的用户友好性方面已展现出令人期待的能力。本文综述了基于NGS的遗传学中AI的现状、未来方向和挑战。此外,还比较了几个罕见病数据库。
Front Genet. 2024-1-25
Comput Struct Biotechnol J. 2020-8-28
Front Mol Biosci. 2021-5-5
Genes (Basel). 2019-11-27
Life (Basel). 2022-2-14
J Cancer Res Clin Oncol. 2023-1
Curr Issues Mol Biol. 2025-6-19
J Intern Med. 2025-9
Genes (Basel). 2025-5-7
Front Public Health. 2025-3-20
Am J Hum Genet. 2021-11-4
Orphanet J Rare Dis. 2021-7-23
J Community Genet. 2021-4
Brief Bioinform. 2021-7-20
Immunol Cell Biol. 2021-2
Annu Rev Genomics Hum Genet. 2020-8-31
Nat Genet. 2020-1