Suppr超能文献

在多治疗案例中基于多变量结果指标进行最佳个性化治疗选择

Optimal Personalized Treatment Selection with Multivariate Outcome Measures in a Multiple Treatment Case.

作者信息

Siriwardhana Chathura, Kulasekera K B

机构信息

Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, HI, USA.

Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY, USA.

出版信息

Commun Stat Simul Comput. 2023;52(12):5773-5787. doi: 10.1080/03610918.2021.1999473. Epub 2021 Nov 15.

Abstract

In this work we propose a novel method for individualized treatment selection when there are correlated multiple treatment responses. For the treatment ( ≥ 2) scenario, we compare quantities that are suitable indexes based on outcome variables for each treatment conditional on patient-specific scores constructed from collected covariate measurements. Our method covers any number of treatments and outcome variables, and it can be applied for a broad set of models. The proposed method uses a rank aggregation technique that takes into account possible correlations among ranked lists to estimate an ordering of treatments based on treatment performance measures such as the smooth conditional mean. The method has the flexibility to incorporate patient and clinician preferences into the optimal treatment decision on an individual case basis. A simulation study demonstrates the performance of the proposed method in finite samples. We also present data analyses using HIV clinical trial data to show the applicability of the proposed procedure for real data.

摘要

在这项工作中,我们提出了一种新方法,用于在存在多个相关治疗反应时进行个体化治疗选择。对于有(k)((k≥2))种治疗的情况,我们比较基于每个治疗的结果变量且以从收集的协变量测量构建的患者特定分数为条件的合适指标的量。我们的方法涵盖任意数量的治疗和结果变量,并且可以应用于广泛的模型集。所提出的方法使用一种秩聚合技术,该技术考虑排名列表之间可能的相关性,以基于诸如平滑条件均值等治疗性能度量来估计治疗的排序。该方法具有灵活性,能够在个体病例基础上将患者和临床医生的偏好纳入最佳治疗决策。一项模拟研究展示了所提出方法在有限样本中的性能。我们还使用HIV临床试验数据进行数据分析,以表明所提出程序对实际数据的适用性。

相似文献

1
Optimal Personalized Treatment Selection with Multivariate Outcome Measures in a Multiple Treatment Case.
Commun Stat Simul Comput. 2023;52(12):5773-5787. doi: 10.1080/03610918.2021.1999473. Epub 2021 Nov 15.
2
Selection of the optimal personalized treatment from multiple treatments with multivariate outcome measures.
J Biopharm Stat. 2020 May 3;30(3):462-480. doi: 10.1080/10543406.2019.1684304. Epub 2019 Nov 6.
3
Quantiles based personalized treatment selection for multivariate outcomes and multiple treatments.
Stat Med. 2022 Jul 10;41(15):2695-2710. doi: 10.1002/sim.9377. Epub 2022 Mar 16.
4
Multi-Response Based Personalized Treatment Selection with Data from Crossover Designs for Multiple Treatments.
Commun Stat Simul Comput. 2022;51(2):554-569. doi: 10.1080/03610918.2019.1656739. Epub 2019 Sep 10.
5
Selection of the optimal personalized treatment from multiple treatments with right-censored multivariate outcome measures.
J Appl Stat. 2023 Jan 10;51(5):891-912. doi: 10.1080/02664763.2022.2164759. eCollection 2024.
6
Personalized treatment plans with multivariate outcomes.
Biom J. 2020 Dec;62(8):1973-1985. doi: 10.1002/bimj.201800072. Epub 2020 Jul 6.
7
A probability based method for selecting the optimal personalized treatment from multiple treatments.
Stat Methods Med Res. 2019 Mar;28(3):749-760. doi: 10.1177/0962280217735701. Epub 2017 Nov 16.
8
Personalized treatment selection using data from crossover designs with carry-over effects.
Stat Med. 2019 Dec 10;38(28):5391-5412. doi: 10.1002/sim.8372. Epub 2019 Oct 21.

本文引用的文献

1
Selection of the optimal personalized treatment from multiple treatments with multivariate outcome measures.
J Biopharm Stat. 2020 May 3;30(3):462-480. doi: 10.1080/10543406.2019.1684304. Epub 2019 Nov 6.
2
A probability based method for selecting the optimal personalized treatment from multiple treatments.
Stat Methods Med Res. 2019 Mar;28(3):749-760. doi: 10.1177/0962280217735701. Epub 2017 Nov 16.
3
Incorporating Patient Preferences into Estimation of Optimal Individualized Treatment Rules.
Biometrics. 2018 Mar;74(1):18-26. doi: 10.1111/biom.12743. Epub 2017 Jul 25.
5
Identifying a set that contains the best dynamic treatment regimes.
Biostatistics. 2016 Jan;17(1):135-48. doi: 10.1093/biostatistics/kxv025. Epub 2015 Aug 3.
6
Which Metrics Are Appropriate to Describe the Value of New Cancer Therapies?
Biomed Res Int. 2015;2015:865101. doi: 10.1155/2015/865101. Epub 2015 Jun 16.
7
Set-valued dynamic treatment regimes for competing outcomes.
Biometrics. 2014 Mar;70(1):53-61. doi: 10.1111/biom.12132. Epub 2014 Jan 8.
8
Importance of achieving the composite endpoints in diabetes.
Indian J Endocrinol Metab. 2013 Sep;17(5):835-43. doi: 10.4103/2230-8210.117225.
9
Linear Fitted-Q Iteration with Multiple Reward Functions.
J Mach Learn Res. 2012 Nov;13(Nov):3253-3295.
10
Estimating Individualized Treatment Rules Using Outcome Weighted Learning.
J Am Stat Assoc. 2012 Sep 1;107(449):1106-1118. doi: 10.1080/01621459.2012.695674.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验