Siriwardhana Chathura, Kulasekera K B
Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, HI, USA.
Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY, USA.
Commun Stat Simul Comput. 2023;52(12):5773-5787. doi: 10.1080/03610918.2021.1999473. Epub 2021 Nov 15.
In this work we propose a novel method for individualized treatment selection when there are correlated multiple treatment responses. For the treatment ( ≥ 2) scenario, we compare quantities that are suitable indexes based on outcome variables for each treatment conditional on patient-specific scores constructed from collected covariate measurements. Our method covers any number of treatments and outcome variables, and it can be applied for a broad set of models. The proposed method uses a rank aggregation technique that takes into account possible correlations among ranked lists to estimate an ordering of treatments based on treatment performance measures such as the smooth conditional mean. The method has the flexibility to incorporate patient and clinician preferences into the optimal treatment decision on an individual case basis. A simulation study demonstrates the performance of the proposed method in finite samples. We also present data analyses using HIV clinical trial data to show the applicability of the proposed procedure for real data.
在这项工作中,我们提出了一种新方法,用于在存在多个相关治疗反应时进行个体化治疗选择。对于有(k)((k≥2))种治疗的情况,我们比较基于每个治疗的结果变量且以从收集的协变量测量构建的患者特定分数为条件的合适指标的量。我们的方法涵盖任意数量的治疗和结果变量,并且可以应用于广泛的模型集。所提出的方法使用一种秩聚合技术,该技术考虑排名列表之间可能的相关性,以基于诸如平滑条件均值等治疗性能度量来估计治疗的排序。该方法具有灵活性,能够在个体病例基础上将患者和临床医生的偏好纳入最佳治疗决策。一项模拟研究展示了所提出方法在有限样本中的性能。我们还使用HIV临床试验数据进行数据分析,以表明所提出程序对实际数据的适用性。